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This paper analyzes the mineral resource definitions from the exploration boom that followed the rare earth
element (REE) price peak of 2011, and finds that

1. the delineated REE mineral resources outside of China reached a total of 98 Mt contained total rare earth

Investment oxides in 2015 with the majority located in Canada (38 Mt), Greenland (39 Mt) and Africa (10.3 Mt),
China representing a fivefold increase between 2010 (16.5 Mt combined) and 2015 (87.3 Mt combined).
Greenland 2. alarge portion of these resources contain REE bearing silicates as dominant ore mineral which have a higher

heavy REE to light REE ratio than conventional carbonate-mineral REE resources.

The results highlight effective, stock market-financed exploration by junior companies and demonstrate REE
resource availability outside of China. However, at current low prices, challenges to transform these resources
from exploration to mining projects remain. These are tied to the up-scaling of beneficiation technologies for
unconventional REE ore minerals and to raising investment for project implementation. In this context, we
contend that the successful delineation of these REE resources provide abundant options for expansion and
investment in the REE industry which are most likely harnessed by the dominant REE market player, China.
Concerns about China’s dominant role are therefore likely to persist.

1. Introduction

The group of elements commonly referred to as Rare Earth
Elements (REE; here to include the lanthanides and yttrium) have
recently moved into the spotlight for raw material policies and are
characterized as “critical” for modern industrial applications (Massari
and Ruberti, 2013; Buijs and Sievers, 2012; Bartekovd and Kemp,
2016). The demand for REE is highly variable and various combina-
tions of elements are used in different intermediate industries such as
phosphors (Eu, Y, Nd, Tb, Er, Gd), metal alloys (La, Ce, Pr, Nd, Y),
catalysts (La, Ce), magnets (Nd, Pr, Dy, Sm) and ceramics and glass
(Ce, La, Pr, Nd, Gd, Er, Ho). Substantial downstream processing and
chemical separation of the mined REE bearing minerals is required
before a final product, often a high-purity REE oxide (e.g., La>0O3), can
be sold to the manufacturing industry. Overall, the annual global
production of Rare Earth Oxides (REO) increased from c. 60,000 t in
1994 to a peak of about 130,000 t in 2010 (Fig. 1; tonnes equals metric
tons). Significant uncertainty prevails over production estimates, in
particular with a view to the extent of illegal and undocumented
production (Adamas Intelligence, 2016) and adherence to production
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and processing quota in China. However, these volumes are small
compared to other mineral raw material such as base metals (e.g., Cu:
16 mio. tonnes for 2010 global production (USGS); or iron ore (about
3000 mio. t in 2012; Jenkin et al., 2015)). Consequently, the REE
constitute a specialty metal sector where their processing typically
involves customization to specifications of individual contract agree-
ments.

Today, at least 85% of the supply of REE is derived from China
(USGS, 2016b) where mining and processing has been concentrated as
other large players started to leave the market in the late 1990s. This
included the US-headquartered company Molycorp which closed the
Mountain Pass mining operations in 2002 (Tse, 2011). Also, an
increase in the share of beneficiated REE products (e.g., individual
rare earth oxides and mixed rare earth compounds) used in domestic
Chinese manufacturing is noticeable (e.g., for NdFeB and SmCo
magnets for electrical equipment). Further, the vertical integration of
mining, beneficiation, and manufacturing of intermediate components
and the assemblage of final products such as smart phones, electronic
products, wind turbines which contain REE-based parts, is observable
in China.
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Fig. 1. Global annual production of Rare Earth Oxides (REO). Production has doubled
from 1994 (65,000 t) to about 130,000 t in 2010, and about 120,000 t (with an official
Chinese domestic production quota of 105,000 t, and production outside Chine) in recent
years. During the same time, the supply market has changed with Chinese producers
providing more that 95% of the market share from about 2003—2011. Following the price
peak for all REO in 2011 (here, price data for Nd oxide, 99% is shown) the supply side
has somewhat begun to diversify again with operations in Australia and the USA.
Production data from USGS. Price data from USGS 1994-2005) and BGR (Price
monitor, 2006—2015; FOB China); annual average prices rebased to 2013 dollar values.

Following a period of a fairly stable REE price regime (Fig. 1),
prices rose in late 2010 reaching a peak in 2011 and arguably
prompted the recent REE exploration boom. This response reflects
also the uncertainties related to Chinese industrial policies including on
REE mining and processing, export quota and value-added duties
(Mancheri, 2015; Wiibbeke, 2013). Subsequently, global REE explora-
tion activities surged and by 2012 more than 200 specialized explora-
tion companies were pursuing prospects of discovering and developing
REE resources outside of China (Hatch, 2012).

Clearly, sudden rises in exploration and investment in junior
exploration companies are not unique features of the REE market.
Often, rises in raw material commodity prices (e.g., for gold, iron or
copper) stimulate exploration in anticipation of substantial returns on
investment from newly discovered resources. Nonetheless, the case of
REE is distinct because any potential mine development arising from
the exploration activities will have to compete with the REE mining and
production plans of China, which is holding a dominant market-share
of the global REE value chain.

It is important to emphasize that all 17 REE are commonly
enriched together by geological processes in particular REE-bearing
minerals. Therefore, it is not possible to selectively target just one
specific element of the REE family for mining. In addition, the relative
proportions of REE vary substantially according to the specific
geochemical conditions of mineralization, the type of REE-bearing
minerals present and the differences in general crustal abundance
(ranging from 64 ppm for La to <1 ppm for REE such as Eu, Tb, and
Lu; Taylor and McClennan, 1985). In general terms, light REE (La, Ce,
Pr, Nd, Sm; LREE) are substantially more abundant in REE deposits
exploited today than the heavy REE (Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,
Lu, Y; HREE). As a consequence, production volumes for Ce, La or Nd
are in the order of tens of thousand tonnes whereas production
volumes for most HREE are only a fraction thereof (i.e., typically <
1000 t; Table 1). The long term price developments (2007—-2015) show
that all REE reached a price peak in 2011 related to perceived
imminent resource scarcity (Campbell, 2014). The deterioration of La
and Ce prices during recent years indicates a significant oversupply of
these REE. Furthermore, the development of LED lighting as a
replacement for phosphors has reduced the demand for some HREE
such as Eu whereas the relative robustness of Dy and Nd prices are
reflections of the continued high demand from the magnet industry
(Adamas Intelligence, 2016).

Overall, it is apparent that the demand pattern for REE has changed
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in recent years (Alonso et al., 2012; Schiiler et al., 2011; Hoenderdaal
et al.,, 2013) with a tilt towards higher use of HREE as functional
materials, e.g. in permanent magnets that are used in high tech
electronic hardware and “green-tech” applications. This has been
conclusively illustrated in a comparison of REE end uses in 1995 and
2007 by Du and Graedel (2013). It is also likely that the shift from
fossil energy fuels to renewable energy sources will further nurture this
pattern as direct drive wind turbines utilize REE magnets, and (plug-
in) hybrid/electrical vehicles LREE in batteries, and REE-magnets in
motors. Simultaneously, demand for electronic consumer goods is
likely to increase. With current supply of REE biased towards LREE,
and mismatching industrial demand, the “balance problem” remains
(Binnemans and Jones, 2015; Binnemans et al.,, 2013; Falconnet,
1985). Increases in demand for HREE might challenge supply, as (1)
total REE consumption is likely to increase, and (2) the “spectrum” of
REE use will turn increasingly towards HREE. The challenge is thus to
explore for and develop additional resources that comply with these
demand parameters, while also augmenting REE recycling rates.

This paper investigates how recently delineated REE resources are
positioned with regard to this issue by examining the relationship
between main types of REE-bearing mineral in these deposits and the
characteristics of LREE/HREE ratios. Furthermore, we address the
effectiveness of recent global REE exploration initiatives and the
changes of “in-ground” resource values from 2011 to 2015. Changes
in market capitalization of the companies that carried out the resource
definition activities are investigated to elaborate on the likelihood of
obtaining financing for mine development.

In an effort to place the results of the REE exploration boom in a
global context we discuss the specific conditions of the REE market and
the dominant role of China, which, in our opinion, is likely to prevail in
the foreseeable future, in contrast to a scenario by Schlinkert and van
den Boogaart (2015) that suggests an oligopoly might form. In
particular, it appears that current low share prices of the stock
market-listed REE exploration companies represent excellent oppor-
tunities to acquire the explored deposits and to secure the supply of
REE-bearing minerals to existing beneficiation facilities. In other
words, if this scenario was to materialize, the results of the global
REE exploration boom could in fact contribute to the further dominant
role of China in the REE industry.

1.1. Investigating the global REE exploration boom — General
considerations

In this paper we examine the results of the short-lived, but highly
successful global REE exploration boom from 2010 to 2014 that
yielded outstanding results in terms of newly defined REE resources
outside of China (mainly in Canada, Australia, Africa, and Greenland).
In particular, we examine the types of mineral resources defined since
REE can be hosted is a variety of REE-bearing mineral types (e.g,
Chakhmouradian and Wall, 2012; Wall, 2104). Today, REE-bearing
carbonates (bastnisite) and phosphates (monazite, xenotime) are
commercially processed whereas the processing technologies for
REE-bearing silicates require additional R&D investment to be
commercialized. Furthermore, we investigate the financial status of
REE exploration companies that were successful in publishing REE
resource estimates. Changes in the perceived market value of these
discoveries can be characterized by comparing share price and market
capitalization values using data from the start (early 2011) and
approximate end (early 2015) of the exploration boom.

In general, resource exploration is an important part of the mineral
raw material value chain and commonly driven by price incentives
when increasing demand outpaces supply from existing mines and
secondary sources (e.g. recycling). Furthermore, access to resources
might be artificially constrained. For example, regulatory changes
regarding export quota in the Chinese REE market served as signal
for a potential, imminent supply risk, arguably enhanced by concerns
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Table 1

Production volumes (2010) and price developments (2007—2015) for individual REE oxides.
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Oxides of: Production (2010) Prices (US$/! kg)3)
% tonnes') 2007 2008 2009 2010 2011 2012 2013 2014 2015

L Cerium Ce 42.6 55.000 40 30 30 30 100 28 8 5 2

R Lanthanum La 25.4 33.000 30 30 38 38 100 58 20 5 3

E Neodymium Nd 17.2 22.000 45 42 63 63 270 124 72 65 47

E Praseodymium Pr 5.5 7.200 60 38 60 60 225 118 85 99 67

H Yttrium Y 4.4 5.700 50 44 50 50 165 110 26 15 7

R Dysprosium Dy 0.7 910 150 170 310 310 1600 1203 557 373 271
E Europium Eu 0.2 260 1000 1600 1400 1400 3300 2610 1102 771 269
E Terbium Tb 0.2 260 800 900 1400 1400 2750 2035 925 657 547

Notes: Production in % from Roskill (2011). nd: no data »: Calculated based on a value of 130.000 t total annual production (source: USGS). Combined production levels for Sm, Gd, Ho,
Er, Tm, Yb and Lu in 2010 are: 5.000t (3.8%). ?: Annual average prices for REE oxides (99%). Sources: USGS (2007-2011) and German Raw Material Agency (“Deutsche

Rohstoffagentur”) (2012-2015).

over the use of REE by China in territorial claims with Japan, and
consequently resulted in parabolic price increases. In this situation,
stockpiling by manufacturers dependent on REE-based intermediate
products was likely the main driving force behind the price surge.
However, some scholars argue that at least a certain element of
speculative investment has also been a factor in the escalating price
dynamics (Campbell, 2014).

This chain of events implied a potential supply risk, heightened
awareness of mineral raw material criticality, and fostered research
initiatives and interest in REE supply from sources outside of China
(Bartekova and Kemp, 2016). The re-opening of the previously active
REE mine at Mountain Pass (USA) and of Mt Weld (Australia)
appeared as a viable option. However, potential higher financial gains
are to be realized by early investments in REE exploration projects.

Mineral exploration is generally carried out by mining companies
which invest revenues from producing mines, both strategically and as
a means to replace exploited reserves. Furthermore, an abundance of
specialized junior exploration companies fund their activities entirely
from private or institutional investments. This business area is
commonly associated with “high-risk/high reward” scenarios
(Majury, 2013). In fact, a majority of junior exploration company
projects fail to commercialize. For example, an investigation of the
Australian junior exploration sector demonstrated that only about 10%
of the companies succeeded in establishing a long-term mining
operation between 2004 and 2014 (Schodde, 2015). Nonetheless, the
prospect of extraordinary profits that may materialize if a valuable and
feasible resource is discovered represents a substantial incentive for
investment.

The mineral sector therefore presents opportunities for long term
investments in form of anticipated dividends when mining operations
generate profits, and opportunities for short term profits for spec-
ulators dealing with traded commodities or with shares of the involved
companies. For example, some investors in physical or ETF-traded gold
pursue profits by predicting the direction of price movements and may
also invest in junior exploration companies when there is a perceived
upward potential in share price.

With regard to the REE market, it is remarkable how efficient rising
REE prices created incentives to invest in exploration, fueling a global
exploration boom. Over a timeframe of just four years the defined REE
mineral resources outside of China have more than doubled from 40 Mt
(2011; USGS) to 98 Mt (TMR, 2016). This result is mainly attributable
to the activities of junior exploration companies in Australia, Canada,
Greenland and Africa.

Nonetheless, multiple layers of complications arise as to whether
these mineral resources will eventually be converted to exploitable
mineral reserves. Some of these issues relate to technological chal-
lenges (e.g., R&D required to commercialize processing methods for
non-traditional REE-bearing minerals) whereas other concerns relate
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to the economic and geopolitical particularities of the REE market.
These subjects are discussed based on the data examined in this paper.

1.2. The REE industry — Production and prices

Besides mining, processing and manufacturing activities based on
REE in China, two larger REE mining operations were developed
shortly after the 2011 REE price peak: in the USA with the Mountain
Pass mine by Molycorp, and in Australia with the Mount Weld mine by
Lynas (Machacek and Fold, 2014). In late 2015, the Mountain Pass
operations were returned to care and maintenance status. Significantly
smaller mining operations are in India, Malaysia, Brazil and Vietnam,
where REE bearing minerals are a by-product of mineral sand mining
mainly targeted at rutile and zircon. Furthermore, REE are a by-
product of apatite and niobium mining and processing in Russia.
Overall, the total of REE mined outside of China in 2015 amounted to
about 16,000 t (China: 105,000 t; USGS, 2016a).

Substantial differences in production volumes for the different REE
and general price levels can be noted (Table 1). These range from the
“low value-high volume” LREE to the “high value-low volume” HREE.
In particular, more than 85% of the REE oxides produced are
represented by three LREE, namely Ce (43%); La (25%) and Nd
(17%; Roskill, 2011; Table 1). This represented a share of 118,000 t of
global production in 2010 (total: 130,000 t; USGS, 2011). In contrast,
HREE such as Eu, Gd, Tb, Dy and Er accounted for less than 5% of
production (total: 3 500 tons). The main importers of Rare Earth Oxide
(REO) products from China are Japan, South Korea, the USA and the
European Union whereas other industrialized countries mainly import
REE-bearing components used in manufacturing (e.g., electronic
components used in the automotive industry).

The REE price peak conditions of 2010-2012 have not prevailed
(Fig. 1, Table 1). For some REE, the current prices are similar to “pre-
peak” conditions, e.g., Nd (2007: 45 USD/kg, 2015: 47 USD/kg) and Pr
(2007: 60 USD/kg, 2015: 67 USD/kg). In contrast, other REE have lost
substantial value, such as Ce (2007: 40 USD/kg, 2015: 2 USD/kg), La
(2007: 30 USD/kg, 2015: 3 USD/kg), and Y (2007: 50 USD/kg, 2015: 7
USD/kg). The downturn in REE prices might be indicative of manu-
facturers' success in reducing REE usage in their applications and/or
the development of substitutions. This would be consistent with the
stabilization of REE production levels at around 110,000—-120,000 t/yr
(2011-2015) which is c. 10,000-20,000 t below peak volumes
produced in 2009 and 2010 (Fig. 1).

1.3. The spectrum of REE deposits and REE bearing minerals
The REE are concentrated in different geological environments and,

on a first order scale, deposits can be classified as related to processes
within the Earth’s crust (“endogenous deposits”) as opposed to deposits
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that are formed during weathering and/or sedimentary processes
(“exogenous deposits”). Geological features of the various REE deposits
have been recently summarized in several publications (e.g.,
Chakhnouradian and Wall, 2012; Wall, 2014; Jaireth et al., 2014;
Linnen et al.,, 2014; Weng et al., 2015, Goodenough et al., 2016).
However, it is important to take note that certain REE ore minerals are
associated with particular deposit types, e.g., weathering resistant REE
phosphates (xenotime, monazite) can be concentrated in mineral
sands.

Traditionally, the bulk of REE have been produced from mines
containing a particular type of REE flourocarbonate, namely
bastnisite, which is strongly enriched in LREE compared to HREE
(Chakhmouradian and Wall, 2012). Hence, HREE enriched xenotime
and monazite can be an attractive by-product of mineral sand opera-
tions providing supplementary supply to the high value/low volume
segment of the REE spectrum. Furthermore, ion-adsorption clay
deposits are being exploited in southern China where solvent extraction
techniques can be applied to yield a HREE rich solution. However, in-
situ leaching can be associated with significant environmental damage
in particular when carried out under unregulated or illegal circum-
stances (Packey and Kingsnorth, 2016).

In terms of the processing required to generate individual REE
oxides from the mined REE bearing minerals, there are well estab-
lished industrial-scale methods for bastnisite, xenotime and monazite
that have been applied and developed over several decades (Jordens
et al., 2013). These technologies and know-how concentrated in China,
while the REE processing industry declined in the USA and Europe in
the 1990s. Integrating the processing chains for the beneficiation of
REE bearing minerals has been part of the business strategy of
Molycorp and Lynas.

There are numerous other minerals that contain significant con-
centrations of REE and many of the deposits targeted by junior
exploration companies contain these “nontraditional” REE bearing
minerals. These include various carbonates and fluorocarbonates,
phosphates, oxides and silicates. In particular, silicates are an im-
portant group representing a REE source that is associated with
specific magmatic rocks (“alkaline intrusions”). Commonly, these
REE bearing silicate minerals (such as e.g., eudialyte, steenstrupine
and allanite) show elevated concentrations of HREE compared to
(fluoro)carbonates (Linnen et al., 2014; Kanazawa and Kamitani,
2006). Provided that appropriate beneficiation and processing tech-
nologies can be established on an industrial scale, there is a large
potential for new types of REE bearing minerals to contribute to the
future REE market.

2. Data and methods

In this study, several data sources are used to examine parameters
such as resource size, grade, mineralogy (i.e., type of REE bearing
minerals in the resource), and value, in order to characterize the
outcome of the global REE exploration boom. We draw on published
REE resource figures' compiled by Technology Metals Research
(TMR), a recently established organization that maintains a systematic
record of publically reported REE resources (TMR, 2015). This “TMR
Advanced Rare-Earth Projects Index (TMR Index)” lists 49 REE
projects with a total of 58 individually delineated REE resources (as
of June 2015). Specifying resource tonnage, grade and the concentra-
tions of individual REO (see Appendix, Table A1). Hence, it is possible
to calculate the content of each individual REO in tonnes for each

1 Disclosure requirements for public companies traded on the stock markets ensure
that their activities and status of projects are reported. For mineral exploration
companies there are particular codes for publishing resource and reserve calculations
(e.g., JORC, NI43-101, PERC, SAMCODE (SAMREC, SAMVAL, SAMOG) etc.), since
these are of fundamental importance with regard to the potential value of the mineral
deposits held in their portfolio.
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resource. The sum of these is the total REO (TREO) content of the
project, however, subtotals of heavy REO (HREO) and light REO
(LREO) provide some interesting insights with regard to the character-
istics of the projects (Table A2). Note that this undebased approach
ignores potential complications related to mineral processing, recovery
rates or the fact that only a portion of the resources will eventually be
classified as reserves during more in-depth feasibility analyses. Overall,
it is an important first order observation from the TMR Index data that
a substantial number of the projects, and in fact >80% of the TREO
contained in the resources, are in Greenland, Canada and Africa.

For a comparison of the current status of defined REE resources
with the situation before the REE exploration boom we use 2010 data
for global REE resources. For such a purpose, the archive of the United
States Geological Survey (USGS) is a valuable source with its annual
reports on national and global mining activities for a large range of
commodities (e.g., USGS, 2011, 2016a, 2016b). The information
commonly includes a mixture of code-compliant resource estimates,
historical data, mineral intelligence and geological estimates depending
on jurisdiction and data availability. For 2010, the USGS reports the
following resource figures for TREO (USGS, 2011): USA: 13 Mt;
Australia: 1.6 Mt; Brazil: 0.05 Mt; China: 55 Mt; Russia
(Commonwealth of Independent States): 19 Mt; India: 3.1 Mt;
Malaysia: 0.03 Mt; other countries: 22 Mt for a global total of 110
Mt. Since data for Greenland, Canada and Africa have been included in
the category “other countries” by USGS (2011) we complement the
data with figures published by Polinares (2012) for these jurisdictions:
Greenland: 10.4 Mt, Canada: 3.7 Mt, and Africa: 2.4 Mt.

The prices for individual REO have been published in the USGS in
the annual “Minerals Yearbook” series. However, this practice was
discontinued with the last annual average price information for REO
from this source available for 2012. Hence, price information from
2012 onwards was sourced from the German Federal Institute for
Geosciences and  Natural Resources (“Bundesanstalt  fiir
Geowissenschaften und Rohstoffe”) using the “Preismonitor” monthly
reports (BGR, 2016).

By combining the project specific information regarding the content
of individual REO it is possible to calculate the “in ground value” for
each of the listed resources and determine changes related to price
fluctuation. This value is determined applying the following calcula-
tion:

IGV(project,  yean=X(LapOs,  project)*P(Lay,Os,  year)+X(CeOo,
project)*P(CeO,, year)+X(PrgO11, project)*P(PrgO;;, year)+X(Nd»03,
project)*P(Nd,03, year)+X(Sm,03, project)*P(Sm,03, year)+X(Eu,03,
project)*P(Eu,03, year)+X(Gd»0s3, project)*P(Gd,03, year)+X(Tb,0-,
project)*P(Th,40,, year)+X(Dy>03, project)*P(Dy>03, year)+X(Ho,03,
project)P(Ho,03, year)+X(Er>O3, project)*P(Er>Os3, year)+X(TmsOs,
project)*P(Tm,03, year)+X(Yb,03, project)*P(Yb,Os, year)+X(LusOs,
project)*P(Lu,03, year)+X(Y>03, project)*P(Y>03, year)

IVG: In-ground value for a specific project and year.

X: Content of an individual REO in tonnes in the resource
(undebased)

P: Average annual price per tonne of a specific REO (Table 1). Note
that prices for Gd,03, Ho>03, Tm,03 and Lu,O3; are not publically
available. Hence, the IGV calculated excludes contributions from these
elements.

In this paper we use the resource data in combination with the
annual average prices for 2011 and 2015 to calculate IGV(project,
2011) and IGV(project, 2015) in order to examine the - real or
perceived - impact of changes in supply/demand conditions from the
peak price environment to the currently prevailing lower price condi-
tions.

In order to compare the resources according to their relative value,
we use the IGV data for 2011 and 2015 and normalize it to one
kilogram of contained TREO. This parameter is commonly referred to
as the “basket prize”. It typically returns higher numbers for resources
characterized by elevated proportions of HREE. It must be cautioned
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that this parameter has minor bearing for judging the profitability of an
eventual mine development since this depends strongly on the ex-
pected operation costs (Bogner, 2015).

Furthermore, an important parameter pertaining to the value of
projects listed in the TMR Index is the value of an average tonne of the
resource (i.e., IGV/resource tonnage) since this is controlled by both,
the average TREO concentration and the spectrum of REE contained. A
project with a large resource tonnage may have an impressive IGV but
low grade and therefore face challenges when production costs per
tonne of ore are calculated during the feasibility stage. However,
relatively high concentrations of HREO may counterbalance this effect.

Importantly, we investigate relationships between deposit size (i.e.,
tonnage of the resource), average TREO grade and the differences in
REE spectrum (i.e., LREE/HREE ratio) of the resources by taking into
account the main type of REE bearing minerals involved. Based on
company reporting regarding the types of REE bearing minerals of
their projects, the resources are grouped into carbonate-, phosphate-,
or silicate-dominated REE deposits.

To characterize the resource value as perceived and reflected on the
stock market we also examine changes in market capitalization of the
publically listed companies holding the rights to the delineated
resources with data from 2011 and 2015. Data for market capitaliza-
tion (i.e., share price multiplied by shares outstanding) for spring 2015
was obtained from Bloomberg (2015). From the same source, the peak
share prices for the companies in spring 2011 have been obtained. For
data regarding shares outstanding in 2011, company web sites and
stock market filing systems for the Canadian and Australian stock
exchange (Sedar, 2015). This time series comparison served as a basis
for estimating the order of magnitude of financing made available to
REE exploration companies to fund exploration activities.

3. Effects of the exploration boom on options for REE supply

In general, the delineation of raw material resources in the mining
industry is a dynamic process which is dependent on commodity price
developments, justifying the required investments in exploration. Also,
what is regarded as a body of rock of sufficient size and ore mineral
concentration with the potential to support a profitable mining
operation is dependent on factors including mining engineering
technology, operating and investment costs as well as legal, fiscal and
permitting frameworks. Therefore, it must be highlighted that figures
on mineral resource content are constantly evolving. Furthermore, it is
important to note the difference in the terms “resource” and “reserve”
in reporting codes such as JORC (2012; Australia) and NI 43-101
(North America) that are designed to regulate the communication of
companies' exploration results to the stock market. For resources, the
main factor is the degree of geological knowledge whereas economic
considerations are in the focus as parts of the resource are transferred
into reserves. Furthermore, it is noteworthy that companies operating
outside of stock market regulations do not need to comply in the same
way to these rules.

3.1. Increase in reported global REE resources outside of China

The recent REE exploration boom led to the discovery and
delineation of REE resources particularly in Greenland, Canada,
Africa, and Australia (Fig. 2). In detail, there are now data which
characterize 58 individual resources from 49 REE deposits (TMR,
2015, detailed resource data, geological description and IGV data in the
Appendix: Tables A1 and A2). In particular, the data for projects in
Greenland, Canada and Africa clearly show the effect of the intensified
exploration efforts. Here, reported TREO contents of the resources are:
39 Mt in Greenland (3 projects), 38 Mt in Canada (15 projects) and
10.3 Mt in Africa (11 projects). The fivefold increase of TREO resources
in these jurisdictions from 2010 (16.5 Mt combined) to 2015 (87.3 Mt
combined) is remarkable. This significant result has been realized in a
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Fig. 2. Development of total REO resources in the principal jurisdictions where REE
exploration has been concentrated during the exploration boom. The starting situation is
characterized by data for 2010 (sources: USGS (2011) and Polinares (2012); see Section
2: Data sources and methods). The data for 2015 is shown as compiled in TMR (2015).
Clearly, exploration activities have substantially increased the known REE resources in
Greenland, Canada and Africa whereas the increase in Australia is comparatively modest.
The apparent decrease in REE resources in the USA is most likely due to the
reclassification of historic data from the Mountain Pass mine according to NI143-101
code compliant reporting required by stock market regulations today. Note that the
reported REO resources in Greenland are strongly concentrated (3 individual projects
with two of them Kringlerne and Kvanefjeld in immediate proximity in SW Greenland)
whereas the total resources in Canada, Africa, Australia and USA are more diversely
distributed (Tables Al and A2).

short time frame and demonstrates the effectiveness of the stock
market investment-funded junior exploration sector of the mining
industry. On a smaller scale, a similar development can be observed for
Australia. Here, 8 individual projects yield a combined TREO value of
4.3 Mt whereas the estimate for resources in 2010 was 1.6 Mt (USGS,
2011).

The development for other parts of the world where REE explora-
tion has been conducted is less clear due to uncertainties in 2010 data.
For example, the TMR Index (2015) lists 5 REE projects in the USA
(including Mountain Pass) for a total of 4.1 Mt whereas the estimate for
2010 is 13 Mt (USGS, 2011). This might be due to the reclassification
of historic resources at Mountain Pass using the more stringent
requirement of NI43-101 reporting. Furthermore, TMR (2015) reports
resources in Sweden, Germany, Kazakhstan, Turkey, and Brazil (total
of 2.5 Mt TREO).

Overall, the resources defined during the exploration boom contain
98 Mt of TREO. Furthermore, the US Geological Survey estimates
TREO resources of 55 Mt and 12 Mt, in China and Russia, respectively
(USGS, 2016a). In a simplistic view, these 165 Mt of global TREO
resources would be sufficient to account for several hundreds of years
of REE demand at current consumption rates (i.e., 120,000 t in 2015)
even assuming recovery rates of 50—70%. In addition, REE resource in
mineral sand deposits, where REE-bearing minerals are recovered as
by-products of heavy mineral (rutile, ilmenite, zircon) mining, are a
source of supply from India, South Africa, Malaysia, Thailand and
Vietnam. Hence, the data demonstrate ample geological endowment of
REE on a global scale and in particular outside of China.

3.2. Tonnage and grade

The tonnage and grade of mineral resources are first order
parameters used to compare mineral deposits and judge their potential
for successful (i.e., profitable) operation. As a rule of thumb, it can be
expected that lower grade deposits will have higher operating costs
(OPEX) per volume unit extracted compared to resource with higher
grades. The resource tonnage may be regarded as the limiting factor
that determines for how many years the mine might be in operation
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Fig. 3. Tonnage and grade characteristics of REE projects defined outside of China
during the recent exploration boom compared to operating mines (status 2015).
Abbreviations for data points from operating mines (from Wall (2014)): BO: Bayan
Obo (China), L: Lovozero (Russia), M: Maoniuping (China), MP: Mountain Pass (USA),
MW: Mount Weld (Australia), W: Weishan (China). The compilation by Wall (2014) lists
also Dalucao (China), Khibiny (Russia) and Sareco (Kazakhstan) as operating REE
mines, however, grade information for these operations are not documented. Note that
the Steenskampskrall project (South Africa, Tables Al and A2) has a resource grade of
14 wt% TREO but a relatively small tonnage (0.7 Mt), hence it is plotting outside of this
diagram. Also, the Wigu Hill Twiga deposit (Tanzania) is outside of this diagram (0.5 Mt
and 5.27 wt% TREO grade).

(life of mine). This is also a critical parameter since up front capital
expenditures (CAPEX) are required to open a mine, and have to be
recuperated during operation before a return on investment might be
generated.

In Fig. 3 the tonnage and grade data for the resources defined
during the exploration boom are shown jointly with corresponding data
for operating mines in 2015. It is apparent that most of the exploration
projects overlap with the current mines in terms of tonnage, however, a
substantial share appears to be of insufficient low grade to compete
with current suppliers (i.e., below 1 wt% TREO). The most prominent
peer in the REE mining market are the mining operations at Bayan Obo
(China) which also produce iron ore. This deposit has a resource of 750
Mt at an average grade of 4.1% TREO (Wall, 2014) which represents a
benchmark “tier 1” REE deposit on a global scale (Fig. 3). Apparently,
the global exploration boom did not succeed in finding new resource of
such size and grade (Table A2). However, similar total REO endow-
ment (>10 Mt contained TREO) has been found in Greenland
(Kringlerne and Kvanefjeld) and Canada (Niobec) but at significantly
lower average grades (0.65—1.7 wt%). Two of the REE deposits in the
database with relatively high grades (6.6 wt% at Mountain Pass, USA
and 7.9 wt% at Mount Weld, Australia) did go into production
following the REE price peak in 2011. The open pit REE mines at
Weishan (China) and Maoniuping (China) are operating at consider-
able lower grades (1.6 wt% and 2.9 wt%, respectively). Furthermore, at
Lovozero (Russia) REE-bearing minerals are recovered as a by-product
of mining targeted at Niobium, thus representing a special case.

Overall, it could be assumed that deposits in the 2—4 wt% grade
range may be in a position to add to global REE production at
competitive operation costs. Among the recently defined resources 10
projects possess grades in this range, 6 of them are located in Africa.
However, since there are considerable differences in the value of
particular REO it is of great importance to consider the REE spectrum
of the individual deposits in more detail. Clearly, a resource with a low
TREO grade but a high proportion of valuable HREE could still have a
competitive advantage. Hence, the LREE vs. HREE endowment and
types of REE bearing minerals will be investigated below.
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Fig. 4. The REE resources defined during the exploration boom consist of a variety of
REE-bearing ore minerals. On a first order, these can be differentiated into silicates,
phosphates and carbonates (see Table A2). About half of the REE contained in these
resources is hosted in silicates (50.7 Mt; see inset pie chart). In terms of regional
distribution, it is apparent that the large resources in Greenland are dominated by REE
deposits with REE-bearing silicate phases which are also important in Canada. However,
Canada also has a large proportion of resources dominated by carbonate REE minerals
which are also common in Africa and the USA. Resources dominated by REE-bearing
phosphates are common in Australia, Africa and Canada.

3.3. Challenges and opportunities associated with ore mineralogy

As outlined above (Section 1.3), there are numerous geologically
defined REE deposit types with particular associations of REE-bearing
minerals. For some of these minerals, which belong to the carbonate
and phosphates mineral groups, there are beneficiation technologies in
commercial operation. In particular, bastnésite (carbonate) processing
facilities are strongly concentrated in China whereas the monazite
(phosphate) produced from the Mount Weld mine in Australia is
processed also by facilities located in Malaysia (Lynas Corp). Currently,
methods for the beneficiation of REE bearing silicate group minerals
are under development and testing, such as in the EURare project
(EURare, 2012, 2015a, 2015b). This R&D work is crucial for the
conversion of a large part of the newly defined global resources which
are associated with silicate ore minerals (Fig. 4).

Information regarding the geological setting of the REE projects
and the contained REE bearing minerals has been summarized in Table
A2 based on the descriptions by the individual companies. Even though
the level of knowledge and disclosure varies it is possible to determine
the main REE mineral type for most of the projects within the scope of
this general classification. This exercise shows that there are 12
projects with carbonates as the main REE bearing mineral, whereas
16 projects are dominated by phosphates and 15 projects contain
mainly REE silicates (6 projects could not be classified). Considering
the distribution of the contained REO in these different types of
resources it is apparent that about 50% (50.7 Mt) are related to REE
bearing silicate minerals whereas deposits with carbonate REE bearing
minerals represent about one third (28.7 Mt). A further 16.5 Mt are
associated with resources containing dominantly phosphate REE
bearing minerals (2.1 Mt in unclassified resources; Fig. 4).

There are substantial regional differences in the distribution of REE
resource types (Fig. 4). The REE resources of Greenland are almost
exclusively in deposits with silicates as the principal REE bearing
mineral whereas in Canada deposits with REE carbonates are domi-
nant (22 Mt of the 38 Mt total for Canada). However, in Canada there
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Fig. 5. Tonnage and grade characteristics of REE projects defined outside of China
during the recent exploration boom show some systematic trends according to the REE
bearing minerals in the resources. Projects dominated by REE carbonates are at the high
end of the grade spectrum ranging from 1 to 6.6 wt%. In contrast, REE silicate deposits
typically have lower grades, typically around 1 wt% or less. Abbreviations as in Fig. 3.

are also significant resources associated with silicates (9.3 Mt) and
phosphates (4.7 Mt). African REE resources are mainly associated with
REE phosphates and REE carbonates, and REE resources in the USA
are mainly associated with REE carbonates. The Australian REE
resources are dominated by phosphate and silicate REE bearing
minerals.

Furthermore, there are significant differences in tonnage and grade
that correlate with REE mineralogy (Fig. 5). Resources dominated by
REE-bearing carbonates generally have REE grades >1 wt% and the
resource at Mountain Pass (USA, Molycorp) is at the upper end of the
spectrum (6.6 wt%). In contrast, typical grades of resources with REE-
bearing silicates are around 1wt% or less. Resource with REE
phosphates show resource grades ranging from <O0.1wt% up to
7.8 wt% (i.e., the resource of the operating Mount Weld mine).

An investigation of the relative distribution of LREO and HREO
among the different resources as defined by predominant REE bearing

contained HREO in resource [Mt]

S b5
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Fig. 6. There are systematic differences in terms of LREO/HREO ratios depending on
the dominant REE-bearing mineral of the resource. Resources that are dominated by
carbonate REE minerals are strongly enriched in LREO relative to HREO. In contrast,
resource with REE silicates or REE phosphates have more balanced REE proportions and
some are even HREE enriched (LREO/HREO mostly ranging from 10 to 0.1). Some of
the projects with LREO/HREO < 10 are also of substantial tonnage and associated with
silicate REE bearing minerals (Kringlerne and Kvanefjeld, Greenland; Strange Lake and
Nechalacho, Canada; Tables A1 and A2).
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Fig. 7. The total of 98 Mt TREO defined during the REE exploration boom consist
mainly of LREO and a smaller fraction of HREO. The contained HREO (15.5 Mt) are
strongly concentrated in resources that have silicates as the main REE ore mineral (Table
A2).

mineral type demonstrate particular characteristics (Fig. 6): The
resources characterized by REE bearing carbonates show strong
enrichments in LREO with LREO/HREO ratios ranging mainly from
10 to 100. In contrast, resources with higher relative HREO contents
(LREO/HREO between 10 and 1) are dominated by REE bearing
phosphates and silicates. Most of the deposits with LREO/HREO
ratios < 10 (i.e, comparatively enriched in HREO) are relatively small
with less than 1 Mt of contained TREO (14 projects of a total of 19).
However, there are 5 deposits in this “elevate HREO” group that range
in TREO tonnage from 4.1 Mt to 28 Mt (Table A2). Of these, four are
dominated by silicate REE bearing minerals (Kringlerne and
Kvanefjeld in Greenland; Nechalacho and Strange Lake in Canada)
and one by REE phosphates (Mrima Hill, Tanzania).

The particular importance of REE-bearing silicates becomes even
more apparent when the overall proportions of contained LREO and
HREO in the resources defined during the exploration boom are
considered (Fig. 7). The total sum of 98 Mt contained REO consists
of 82.4 Mt LREO and 15.5 Mt HREO. More than 80% of the HREO
(12.8 Mt) are contained in resources that have silicates as the main
REE bearing mineral. Clearly, development of industrial-scale bene-
ficiation technology for REE-bearing silicates would have a significant
impact on the supply of HREO.

In summary, it is important to realize that many of the REE
resources defined outside of China consist of REE-bearing silicates and
phosphates and have a higher proportion of HREO than the traditional,
carbonate (i.e., bastnisite) -dominated REE resources that are the
current focus of exploitation (e.g., Bayan Obo deposit). This means
that, despite the overall lower grade of many resources with REE-
bearing silicates, it could be viable to develop such deposits due to the
higher value REE spectrum (i.e., higher HREO content of these
resources). Therefore, we investigate the resource value characteristics
in some more detail in the following section.

4. Economic considerations

A nominal value of a given mineral resource in the ground can be
calculated by multiplying the amount of metal/element contained by
the commodity price (Section 2). However, this value has limited use in
mine development feasibility studies since numerous additional factors
including recovery rates, operation costs, geometallurgy of the ore,
mining technology, investment needs, infrastructure and distance from
market influence whether an operation can be profitably implemented.
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Despite these limitations, this metric is a useful first-order indicator
when comparing mineral resources of a given mineral raw
material type and in time series studies. In the following, we consider
the “in ground value” of the REE resources defined during
the exploration boom using the annual average prices for 2011 (peak
price environment) and 2015 (prices close to or below long term
averages).

4.1. Effects of changing REE prices and the value of REE resources

The total “in ground value” of the resource defined during the REE
exploration boom, in 2011 prices, was in the order of USD 17 trillion
(Table A2). With annual prices for 2015 this value dropped to USD 1.8
trillion. In other words, in 2015, the same resources were valued at
only a tenth of their 2011 value which highlights the difficulty in
making long term predictions regarding mineral raw material prices
especially in minor metal markets.

In the case of REE mining, there is the additional complicating
factor that price developments are not necessarily linked exclusively to
changes in supply and demand. It is quite feasible to imagine another
period of real or perceived supply shortage since the overall situation of
the REE mining market has not changed significantly (i.e., the market
continues to be dominated by China). However, there are also indica-
tions that the potential for China to influence REE prices is limited
(Zhii et al., 2016). Nevertheless, it can be argued that the value of the
REE resources outside of China is strongly tied to global economic and
political developments since the main criticality parameters remain
unchanged (i.e., high strategic industrial importance combined with
limited supply options). As such, the 2011 and 2015 data may
represent order of magnitude indicators for the upper and lower limits
regarding valuation of these REE resources.

For exploration companies active outside of China, this general
situation has a profound impact on the potential to secure investments
for capital expenditure required to work towards mine development.
Ernst and Young (2011) argued that only a few REE exploration
companies will be able to pursue public equity raising and/or equity
stake disposal for offers of future offtake agreements. Hence, a large
portion of the REE companies will need to pursue a partial or full exit
strategy by selling the project (Ernst and Young, 2011). This is a
reflection of the lacking participation of larger mining companies
with income from producing mines in the REE exploration, and of
the more prevalent participation of junior exploration companies
which lack assets that could be used as collateral in funding mine
developments.

In order to further address the question of which REE resources
may have the best chances of eventual exploitation it is worthwhile to
return to the observed differences in REE spectra related to the type of
the predominant REE-bearing mineral and the variation in grade of the
resources. Here, we investigate relationships with two parameters:
basket price (USD/kilogram of contained TREO) and value of an
average tonne of the resource (Fig. 8a—c). Note that in this scenario
the basket price should be regarded as a maximum estimate since it
includes the LREE cerium and lanthanum even though these are
currently difficult to sell due to oversupply that is reflected in record-
low prices.

For 2011, the basket price data show a spread from USD 120 to
USD 320 with the resources dominated by REE bearing carbonates at
the lower end of the spectrum (Fig. 8A). Most of the silicate and
phosphate-dominated deposits are in the range of USD 150 to USD
250, however, the upper end is occupied by some phosphate-domi-
nated deposits (Brockmans, Australia; Browns Range, Australia;
Kutessay 11, Kazakhstan; Lofdal, Namibia). Interestingly, the resources
at Mountain Pass and Mount Weld are in the lower portion of the
basket price spectrum.

The general characteristics of this distribution remain largely
unchanged in 2015, however, the spread is now from USD 10 to
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USD 40 (Fig. 8B). Also, the value loss measured by basket price has
been higher for strongly LREE enriched carbonate deposits (e.g.,
Mountain Pass dropped by 92% from USD 132 to USD 11;
Brockmans dropped by 87% from USD 309 to USD 39).

From this observation, it would appear that some of the silicate
and phosphate-dominated resources are of higher relative value
compared to their peers and could have a stronger chance at
remaining profitable mining operations during price downturns.
However, a somewhat different picture emerges when the value per
tonne of the resource is considered (Fig. 8C). By this metric, both
the characteristics of the REE spectrum and the grade of the
deposit are reflected. As for the basket price, there is a severe reduction
in USD/t values when comparing data from 2011 and 2015 (Table A2),
however, the relative valuation of the resources is significantly
different. It emerges that Mountain Pass and Mount Weld are in
fact high value deposits in this metric compared to their peers with per
tonne values of USD 740 (Mountain Pass) and USD 1370 (Mount
Weld) in 2015. The silicate-dominated deposits are mainly in the range
of USD 100-300 per tonne, reflecting the comparatively low average
grades of such deposits. For deposits with phosphate-bearing REE
minerals, a large variability is apparent including deposits with < USD
50 but also deposits with values around USD 600/t (Arax4, Brazil and
Mriam Hill, Kenya). Another deposit with a high value per tonne is
Ngualla (Tanzania) which is dominated by carbonate REE bearing
minerals. However, it is remarkable how clearly the Mount Weld
deposit stands out compared to its peers in this parameter. The
relatively high average grade of the deposit (7.9 wt%, Fig. 5, Table
A2) combined with a more favorable REE spectrum compared to
Mountain Pass (Fig. 6, Table A1) are important factors that contribute
to the resilience of this mining operation even under the current low
price conditions.

Considering basket price and value per tonne characteristics
provides some first order insights regarding the potential viability of
eventual exploitation of the REE resource delineated outside of
China. Importantly, some of the projects considered in this study
have reached the feasibility stage and published expected operation
costs range from USD 6-50 per kilogram REO (compiled by Bogner
(2015)). Comparing the estimated operation costs and basket price it is
interesting to note that it is not necessarily the “higher value” (i.e.,
higher basket price) projects that are above the “break even” line
(Fig. 8D). Rather, 6 of the 7 projects with basket price values below
USD 20 have projected operational costs that indicate a positive
revenue. In contrast, for the 7 projects with basket price values in
the USD 20-40 range there are only 2 projects for which a positive
revenue could be expected. These systematics are likely a reflection of
differences in grade, REE spectrum, ore mineralogy and project-
specific factors (e.g., accessibility, infrastructure, mining and beneficia-
tion methods).

It is also noteworthy that many of the resources with USD/kg
values > 20 are associated with REE bearing silicates, especially when
considering the larger deposits (> 1 Mt TREO contained; Fig. 8A and
B). Here, substantial investments in R & D are still required in order to
develop, up-scale and optimize mineral processing and beneficiation
technologies. Hence, with significant technology development, opera-
tion cost for these types of deposits might be reduced. Yet, investment
for R&D work and high-risk capital expenditure in the REE sector
appears challenging to secure during the current low price environ-
ment.

4.2. How much did the REE exploration boom cost?

The search for mineral deposits and the definition of resources is
generally considered an investment from which profits can be reaped at
later points in development. During periods of high commodity prices,
junior exploration companies have the possibility to access market
financing for their activities, e.g., via public stock market equity
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Bogner (2015)) and current basket price. Operating cost estimates are available for the following projects (in order of increasing costs): Steenskampskraal: 9.50 USD; Nguall: 12 USD;
Zandkopsdrift: 13 USD; Nolans: 14 USD; Bear Lodge: 15 USD; Kipawa: 17 USD; Songwe Hill: 27 USD; Nechalacho: 28 USD; Browns Range: 29 USD; Bokan: 32 USD; Round Top: 33
USD; Norra Kérr: 40 USD; Lofdal: 50 USD). Abbreviations: BM: Brockmans (Australia), BR: Browns Range (Australia), K: Kutessay II (Kazakhstan), L: Lofdal (Namibia), MP: Mountain
Pass (USA), MW: Mount Weld (Australia). Note that the Steenskampskraal project (South Africa; 0.7 Mt at 14 wt% TREO) and the Wigu Hill Twiga deposit (Tanzania; 0.5 Mt, 5.27 wt%

TREO grade) are plotting outside of Fig. 8C.

placements. During the last global upswing in commodity prices (c.
2006-2012), global exploration budgets for nonferrous metals soared,
reaching a peak of about USD 21 billion in 2012 (SNL Metals and
Mining, 2015). Hence, the REE exploration boom occurred at a time
when investment in mineral exploration was at an all-time high. More
than 200 REE-focused junior exploration companies were listed on the
Toronto stock exchange during 2011 (Hatch, 2012). Yet, only a fraction
of these companies has been successful in defining REE resources
during their exploration activities.

The compiled REE resources (TMR, 2015) are part of the portfolio
of publicly listed companies, and some privately held entities. Their
activities are funded by investors seeking a profit from their place-
ments, and, in general, the deposit valuation will augment significantly
between the discovery stage and the completion of the bankable
feasibility study (Ernst and Young, 2011).

The high risk associated with mineral exploration is correlated with
the outlook for high profits. Short-term investors, so-called speculators,
are particularly drawn to this type of investment, yet their prime
interest lies in achieving a high profit return on investment over a short
period of time, rather than in the development of a mine. These types of
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investors benefit therefore from selling their shares at a profit between
the first and the second phase illustrated in Fig. 9. Only a fraction of
exploration projects eventually develop into mining operations (phase
three in Fig. 9), and long-term investors would receive dividends when
the mining operation generates a profit.

Other forms of capitalizing on investments in the junior resource
sector include exit strategies such as mergers and acquisitions by larger
mining companies interested in gaining access to particular projects.
Furthermore, a high degree of volatility is characteristic for junior
stocks in the mining and exploration sector, which is, among other
factors, linked to investor decisions in which they weigh financial gains
against perceived risk. Hence, there are entry and exit opportunities for
speculators seeking short term profits.

In an attempt to quantify the value of REE companies, which can be
regarded as a proxy for the amount of funds available for exploration
activities, we investigate the developments of their stock prices and
market capitalizations from early 2011 to early 2015. The rights to the
REE projects listed in Table A2 are held by 44 individual companies of
which 37 are publicly listed. Of these, 10 are listed on the Australian
stock exchange, 22 on the Toronto stock exchange, 3 are listed in the
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Typically letters of intent from
potential customers
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Post-feasibility and pre- :
e / Operational assets
High Low

Steeper value curve Improved value
Sell equity to a partner in
exchange for know-how and/or
customer offtake
Bank/Project/Equity finance

Balance sheet funding
Rights issue
Debt issuance

Project execution risk Rising costs
Falling commodity prices

Environmental risk

Offtake agreement with/without
equity

Joint marketing and distribution
agreement
Technology/know-how/IP and
technical assistance agreements

Partnerships already
typically agreed

Fig. 9. Explorer perspective on risks and challenges as related to financing. Three distinct phases (post-discovery and pre-feasibility; post-feasibility and pre-production; operational
assets) can be identified from the perspective of an exploration company and its activities along resource definition, up to potential mine development. The attributes financing, value,
traditional funding model, risks, and prevalent partnership model are evaluated for each of the three phases. Source: modified from Ernst and Young (2011).

USA and 2 are listed in Europe (Table A3). For these companies, the
combined market capitalization was in the order of USD 19 billion
during spring 2011 (when share prices reached their peak). In contrast,
this value was only about 1 billion USD in 2015, representing a 95%
decrease.

It appears that most of the investments made available by
private and institutional investors to discover and define REE
resources outside of China, are currently losses. Furthermore, currently
it seems unlikely that the required funds for capital investments
could be secured to finance up-front development costs. Our analysis
further suggests that many projects will face difficulties in reducing
operation costs to the level where positive revenue can be expected
(Fig. 8D).

Hence, it seems doubtful that the defined resources will be
transformed into producing mines with prospects for dividend pay-
ments to long-term investors. It can be inferred that the costs for the
REE exploration boom have been covered by those stock market
investors which remained with their shareholdings between 2011 and
2015, and, on the balance, incurred substantial losses. The combined
total of these losses is challenging to trace accurately since it depends
on the background of each individual trade. However, assuming that
about 10% of the difference in market capitalization values between
2011 and 2015 are negative revenue, the cost for the REE exploration
boom may well be in the order of USD 2 billion. If this analysis was
expanded to REE junior exploration companies that have not suc-
ceeded in publishing a resource estimate (i.e., the large majority of the
total of about 200 companies active in 2012), this value would be
significantly higher.

5. Discussion: making sense of the exploration boom

In this paper we argue that the REE exploration boom displayed
two distinct characteristics: (1) the definition of substantial silicate
REE-bearing mineral ore resources with comparatively higher HREE
content, and (2) a correlation of market capitalization of junior
exploration companies and in-ground value of the defined resources
with the general changes of REE prices (i.e., high during peak price
conditions in 2011 and low at currently subdued price levels in 2015).
In the following, we discuss how these characteristics can be inter-
preted.

Demand for HREE on the increase amid industrial con-
solidation. Arguably, industrial REE demand is shifting towards
HREE and driven by the expansive interest in renewable and more
efficient energy technologies, which rely, among other, on the magnetic
and fluorescent properties of HREE. In this light, and given the high

LREE/HREE ratio of traditional REE ore minerals, the definition of
new REE deposits with REE-silicate minerals that are comparatively
more enriched in HREE is advantageous to industrial development
dependent on HREE. This includes manufacturing REE-based magnets
for generators in particular direct drive wind turbines, and for REE-
based permanent magnet motors used in a wide variety of applications,
from hard disc drives to automobiles, industrial motors for conveyor
belts, and many more.

With Chinese ambitions to upgrade national industries towards
higher value-added high-tech manufacturing, the interest in
HREE accessibility is evident. This is particularly accurate amidst
anticipations of industrial consolidation that could put a halt on
illegal REE mining activities, which would arguably affect the HREE
supply from Southern Chinese provinces where relatively HREE rich
“ionic clay deposits” are located. The detrimental effect of illegal REE
mining, in particular with regard to the contamination of drinking
water sources, has been recently highlighted (Liu, 2016). The enforce-
ment of environmental regulations led to the closure of mining
operations and the seizure of unregulated REE products (Mining
Journal, 2016).

Furthermore, the restricting of mining quota allocations has left
some firms with significantly reduced rights and it appears that these
are now attempting to gain access to REE-minerals outside China to
keep their facilities in operation. This is in line with previous analyses
including Chen (2011, p. 5): ‘It can be supposed that after consolida-
tion and with effective total production control of 85 thousand tons in
2013, China will reduce its supply proportion to 64%, and leave the rest
36% to those producers out of China.

Selective interest in REE deposits and REE companies by
Chinese stakeholders. In this light it is useful to remember
expressed prior interest by Chinese stakeholders in the REE-deposit
of Mount Weld (Kirchner, 2014), yet not of Mountain Pass, but rather
in Magnequench, the REE-magnet manufacturer (for a detailed
discussion of the latter see Machacek and Fold (2014)). This variegated
interest might be explained by Fig. 8 in which we demonstrate the
higher value of the phosphate REE-bearing minerals at Mount Weld, as
compared to the lower value of the carbonate REE-bearing minerals at
Mountain Pass.

Given the significant reductions in market values of the REE-
bearing mineral deposits as shown in Table A2, and in Fig. 8b due to
REE price decreases since the peak, it could be hypothesized that some
deposits are of more interest for acquisition than others, and in this
context, we could specifically examine a selected silicate-mineral ore
project (Kvanefjeld by Greenland Minerals and Energy Ltd. (GMEL))
for which trial separation processes were financed by the EU-project
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EURare. These were executed recently by Outotec and GTK in Finland,
with follow-up beneficiation at MEAB and RWTH Aachen in Germany
(EURare, 2015a, 2015b).

The case of Kvanefjeld (Greenland). Interest has been ex-
pressed in the Kvanefjeld project in the form of a second memorandum
of understanding signed between China Non-Ferrous Metal Industry’s
Foreign Engineering and Construction Co. Ltd. (NFC), and GMEL, an
Australian registered junior exploration firm with exploration rights in
the Kvanefjeld deposit of South Greenland (GME Ltd., 2015). This
engagement might be understood in the context of higher strategic
interest in relatively HREE enriched mineral deposits for future
demand in China.

The MoU refers, among other, to the ‘extensive exchange of
technical data relating to the Kvanefjeld Project’ (GME Ltd., 2015)
and assigns GMEL the responsibility of finalizing the exploitation
license application, commencing the permitting process, and complet-
ing pilot plant operations to confirm the proposed process flow sheet.
NFC’s participation in the REE industry occurs via its subsidiary
Guangdong Zhujiang Rare Earths Company, which has initiated the
construction of a 7 000 tpa capacity rare earth separation facility in
China to cater to e.g. a REE bearing silicate mineral concentrate which
could be produced from Kvanefjeld.

In the context of an analysis by Ernst and Young (2011, p. 20) that
only a small number of REE exploration firms will successfully raise
public equity and/or dispose equity stakes for future offtake agree-
ments, this second MoU between GMEL and NFC could also be viewed
from the perspective of a full or partial exit strategy for GMEL.
Questions remain then for the extent to which the interest of NFC in
pursuing its MoU remains, should consolidation strategies not be
implemented as planned in China, for reasons of conflicts of interests
arising from structural challenges in the Chinese industrial organiza-
tion (latter is discussed by Wiibbecke (2013), Mancheri et al. (2013),
and Packey and Kingsnorth (2016)).

The market capitalization of ideas and balancing knowl-
edge. A second characteristic of the REE exploration boom illustrated
in this paper, the significant augment in junior exploration firms’
market capitalization, could be viewed through achieved gains:
Specifically, the financing of ideas of developing alternative mining
projects to the quasi-monopoly/de-facto monopoly of China were
turned into augmented knowledge and achieved definitions of new
REE-bearing mineral deposits with comparatively higher HREE con-
tent. Arguably, the idea of creating stability amidst uncertainties as to
Chinese industrial policy, channeled monetary flows into materialized
knowledge in form of augmented resource definitions.

While the in-ground value of these resources has significantly
decreased due to low REE prices, the existence of knowledge on
these new deposits could also be viewed as an achievement in
'balancing power' by matching the known, mapped REE-resources of
China, with new and updated knowledge on REE deposits outside
of China. For instance, Hayes-Labruto et al. (2013, p. 57) in their
analysis from a Chinese stakeholder perspective, point to a ‘varying
distribution of responsibility’ from the view of reserves held by
different countries.

Standardization of the REE industry? Recent discussions
among researchers and industry participants have also centered on
whether standards are to be designed for the REE-industry, initially
REE product standards, followed, potentially, by REE-processing
standards. While standards are a means of regulation, including for
market access, with the potential to benefit industrial frontrunners, in
the case of the REE industry, they are argued to be an opportunity for
achieving some control over the industry. Yet, to which extent a
product as opposed to a process standard can reach this objective
requires a thorough analysis.

It is important to realize that most of the facilities for cracking,
processing and refining the primary REE-mineral ore into saleable
products, often high purity individual REE-oxides, are located in
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China. This is, among political interests, a result of a pursued market
concentration process of the REE industry, supported also by the
particularities of REE-occurrences in China, which initiated during the
1990s. Hence, the option to mine REE ore minerals outside China
represents only one step into the direction of diversifying the REE
market.

Small steps are underway to strengthen processing facilities for
REE elsewhere (e.g. by Lynas in Australia and Malaysia), which
constitute a small fraction of the global market. Low REE prices exert
substantial pressure on these companies. Will any of these companies
holding the rights to REE resource outside of China be able to
withstand a significant phase of lower prices, in the arguably quasi-
monopolistic situation? In the following, we discuss which role the
defined, relatively higher in HREE-enriched resources could assume in
this process.

Strategies to maintain the REE industry dominance by
China. A high degree of integration and concentration of the REE
market provides power to maintain the Chinese “quasi-monopoly”.
However, supply from Chinese REE resources could become subjected
to pressure (1) under stringent regulation to reduce environmental
damages e.g. from HREE leaching of ion-adsorption clays, and (2)
decreased iron ore prices which affect the mining operations at
Bayan Obo which compete with high volume/low-cost supply from
Western Australia (further unfolded by Packey and Kingsnorth (2016)).
These issues could be counteracted by increased exploration efforts in
other REE fertile geological areas within China (e.g., Maoniuping,
Weishan).

Alternatively, it may be attractive to source REE bearing mineral
ore from external resources for the Chinese REE processing and
separation industry. As has been demonstrated, REE resources have
been successfully defined including traditional REE bearing minerals
(bastnisite, xenotime, monazite) and non-traditional silicate and
oxides REE bearing minerals. Given the well-established expertise in
processing REE minerals, it seems likely that new methods for treating
non-traditional types of minerals from the recently defined resources
could be commercialized in China, as described on the case of GMEL
and NFC.

Companies holding the rights to the defined REE resources outside
of China currently experience low market capitalizations and struggle
with raising funds for the high CAPEX required to finalize their
feasibility studies, start the actual mining operation and construct
beneficiation and separation infrastructure. Their share prices are
typically only a fraction of the peak notations, e.g. in the case of
Molycorp from about 80 USD in 2011 to less than 1 USD in 2015. This
means that investors looking at feeding REE mineral supply to existing
Chinese processing facilities are presented with a multitude of low cost
buying opportunities.

Potential gains from mining and processing unconven-
tional REE bearing minerals enriched in HREE. For REE
resources dominated by REE silicate ore minerals there is a need for
research and development to establish processing and beneficiation
methods on a commercial scale. Mainly, substantial upscaling is
required to move “bench-top” solutions to viable large scale operations.
The financial risk involved in investing in such research, in the context
of a rather uncertain share of illegal REE production in China feeding
global demand, leaves little incentive to investors to finance the
commercialization and implementation of beneficiation techniques of
unconventional higher enriched HREE minerals. This situation could
be addressed by political support for initiatives that facilitate R & D and
commercialization, yet it is contested for various reasons (ERECON,
2014).

A counter-argument hardly explicitly addressed so far, however,
evolves around the possibility of regaining a foothold in REE proces-
sing, including for existing separation capacity outside China. From a
historical perspective, REE separation technologies and environmental
regulations, specifically restrictions on raw material imports with
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radioactive content, determined the geographical shift in REE industry
governance, from the U.S. and Europe/Australia, respectively, to China
in the 1990s.

With investments in research and development toward the com-
mercializing of beneficiation technologies of unconventional higher
enriched HREE mineral ore, could historical players not only build on
their remaining presence of knowledge on REE separation technology,
but also participate in a technology race which could open pathways for
innovative activity. Such activity could yield untapped potential for new
discoveries of e.g. unexplored potentials of some HREE, such as Lu, Er,
Yb for the development of advanced materials.

Further, along the same argument, to have a supply of HREE
originating from some of the silicate mineral ore bearing mines outside
of China could provide a degree of ‘self-sufficiency’ to key industrial
activities such as catalyst manufacturing and development in Europe,
yet with a supply of relatively more HREE than LREE enriched mineral
ore that matches e.g. the needs of European industrial demand more
closely.

With the abundance of REE mineral resources in Canada and
Greenland it might be envisioned that processed material from these
areas could be transported to NE Asia via newly accessible Arctic
shipping routes (“NW passage”). In this regard, the recently signed
European-Canadian free trade agreement may also present possibilities
for the REE industry. In essence, the newly defined REE resources
provide opportunities for developing REE supply for the global REE
market from sources outside of China.

6. Conclusion

In this paper, we examined the surge in REE exploration activities
carried out by junior exploration companies which secured funding
from stock markets during REE peak price conditions. This coincided
with a phase of generally high levels of global mineral resource
exploration. The investments in the REE exploration sector led to the
definition of about 98 Mt of REO in resources outside of China within 5
years (2011-2015), demonstrating the capacity of the junior explora-
tion sector to react quickly to price dynamics in the mineral raw
material market.

Our detailed investigation of geological, economic and strategic
issues pinpoint the following issues:

1) REE deposits are fairly common outside of China. However, in
terms of resource tonnages and average grade there are only a few
that are comparable to current producing mines.

Funding for exploration activities was readily available from the
public stock exchange at the time when REE prices were rising,
nurturing hopes for high returns on investments.

REE resources were defined in many countries, however, the
highest concentration of newly defined TREO resources are
in Canada (38 Mt), Greenland (36 Mt) and Africa (Kenya,

2)

3)

Appendix A

See Tables A1—-A3.
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Tanzania, Malawi, South Africa; 10 Mt). Combined, this represents
a fivefold increase compared to estimates from 2010 for these
jurisdictions.

Since their peak in 2011, REE prices declined substantially and
global production appears to have stabilize at about 110,000 t/a.
Concurrently, there is a substantial decrease in public interest in
stocks of REE companies. The REE producers that managed to
kick-start REE mining and processing outside of China are affected
by declining share prices (e.g. Molycorp, USA; Lynas, Australia), as
well as companies pursuing project development and feasibility
studies.

In the current situation, an opportunity presents itself to acquire
REE resources to secure long term supply of REE bearing minerals:
Investors with processing facilities can choose from a broad range
of defined REE deposits at bottom-of-the-market prices, illustrated
on the case of Australian registered GMEL and Chinese NFC. This
opportunity arises in the context of REE mining production in
China that is under pressure to meet stringent environmental
legislation, limited mining quota allocation to some REE processing
operations due to consolidation plans, and challenges for REE
mining at the important Bayan Obo mine. At Bayan Obo, REE are a
by-product of iron ore mining, exploiting a comparatively low-grade
Fe resource, which faces competition from high-grade iron ore
production in Australia.

4)

5)

Overall, the net effect of the situation suggests that the country
with the most highly integrated REE market from mining to proces-
sing, and use in the manufacturing of electronics and high-tech
industry may realize most benefit from the resource definitions
achieved by the global REE exploration boom. Hence, the investments
in junior companies to fund REE exploration activities have arguably
only one country that is well enough positioned to take advantage:
China.
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Table A3 (continued)

2015 MCAP
(MUSD)

2015 #shares
(milion)

share price

2011 MCAP
(MUSD)

2011 #shares

(million)

currency peak share

Ticker Symbol

(s)

Project

Project (s)

Company

spring 2015

2011

price

Country

344
11

245
37

0.92

0.20

10,235
399

82

NYSE:MCP USD 77.54
USD

USA
USA

Mountain Pass

Round Top

Molycorp Inc.

28

OTCQX:TRER

Texas Rare Earth Resources

Corp.
Galileo Resources PLC;.

49 0.02 125

102

0.48

GBP

AIM:GLR

Glenover (JV)

Tantalus

33

10.50

not listed in

2011

F:TAE:GR Euro

MDG

Tantalus Rare Earths AG

not listed
not listed
not listed
not listed
not listed
not listed
not listed

TUR

Aksu Diamas

Xiluvo

AMR Mineral Metal Inc.

Promac Lda.

MOZ
GRL

TANBREEZ
Storkwitz

Rimbal Pty Ltd

GER

BRA

Seltenerden Storkwitz AG

Serra Verde

Mining Ventures Brasil Ltda.

Appia Energy Corp.

Elliott Lake Teasdale
Glenover (JV)

Fer-Min-Ore (Pty) Ltd.

1206

23,285

TOTAL

Data sources: company web sites and www.reuters.com/finance/stocks for share price information and shares outstanding spring 2015 (data collected between 25 and 27 February 2015). Shares outstanding in 2011 from company annual reports

and ww.sedar.com. Market captialization is calculated from share price and shares outstanding data. Annual average exchange rates for conversion to USD are: AUD 2011: 1.0338; 2015: 0.7521; CAD 2011: 1.0114; 2015: 0.7829; GBP 2011:

1.6041; 2015: 1.5285. (from: http://www.usforex.com/forex-tools/historical-rate-tools/yearly-average-rates).

#shares: Number of shares outstainding; MCAP: Market capitalization (here: share price*shares outstanding; disregaring any possible assets of the companies).
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