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Abstract

Microbial reduction of hexavalent uranium has been studied widely for its potential role in bioremediation and immobiliza-
tion of soluble U(VI) in contaminated groundwater. More recently, some microorganisms have been examined for their role in
immobilization ofU(VI) via precipitation of uranyl phosphatemineralsmediated bymicrobial phosphate release, alleviating the
requirement for long-term redox control. Here, we investigated the mechanism ofU(VI) removal mediated by an environmental
isolate, strain UFO1, that is indigenous to the Field Research Center (FRC) in Oak Ridge, TN and has been detected in U(VI)-
contaminated sediments. Changes in U(VI) speciation were examined in the presence and absence of the electron-shuttling moi-
ety, anthraquinone-2,6-disulfonate (AQDS). Cell suspensions were capable of nearly complete removal of 100 lMU(VI) from
solution within 48 h; U(VI) removal was not dependent on the presence of an exogenous electron donor or AQDS, although
AQDS increased the rate of U(VI) removal. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption
Fine Structure (EXAFS) spectroscopic measurements indicated that U(IV) was the predominant oxidation state of uranium in
cell suspensions in both the absence and presence of 100 lM AQDS. Interestingly, 17% of the cell-associated precipitates in a
U(VI)-treated suspension that lacked AQDS had spectral characteristics consistent with a uranyl phosphate solid phase. The
potential involvement of phosphate was consistent with observed increases in soluble phosphate concentrations over time in
UFO1 cell suspensions, which suggested phosphate liberation from the cells. TEM-EDS confirmed the presence of uranyl phos-
phate with a U:P ratio consistent with autunite (1:1). EXAFS analyses further suggested that U(IV) was bound to low-Z neigh-
bors such as C or P, inferred to be present as functional groups on biomass. These results suggest that strainUFO1 has the ability
to facilitate U(VI) removal from solution via reductive and phosphate precipitation mechanisms. Both mechanisms offer poten-
tial for the remediation of U-contaminated sediments at the FRC or elsewhere.
� 2011 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

Uranium is a major soil and groundwater contaminant
at 12 of the 18 major Department of Energy (DOE) facili-
ties due to nuclear fuels and weapons production and waste
reprocessing (Riley et al., 1992). At Area 3 of the former
DOE Field Research Center (FRC; currently the site is
known as the Oak Ridge Integrated Field-Research

0016-7037/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.gca.2011.02.040

⇑ Corresponding author. Present address: Biofuels and Renew-

able Energy Technologies, Idaho National Laboratory, P.O.

Box 1625, Idaho Falls, ID 83415, USA. Tel.: +1 208 526 4554;

fax: +1 208 526 0828.
E-mail address: alikona.ray@gmail.com (A.E. Ray).

1 Present address: NLC Nalco India Limited, 20A Park Street,

Kolkata 700016, India.
2 Present address: Department of Chemical and Biological

Engineering, Montana State University, Bozeman, MT 59717,

USA.

www.elsevier.com/locate/gca

Available online at www.sciencedirect.com

Geochimica et Cosmochimica Acta 75 (2011) 2684–2695

    This article is a U.S. government work, and is not subject to copyright in the United States.



Challenge site) established at the Y-12 Facility at Oak
Ridge National Laboratory (ORNL) in Tennessee, mea-
sured uranium concentrations have been as high as
�50 mg/L in groundwater and 800 mg/kg in aquifer solids
(Wu et al., 2006). The mobility of uranium and the risk it
poses to the environment depend upon its chemical specia-
tion. Under typical environmental conditions, uranium pri-
marily exists in two oxidation states, U(VI) and U(IV)
(Geipel, 2005). Hexavalent uranium is much more soluble
than the reduced form, U(IV), and is often present as
U(VI)-carbonate complexes in groundwater (Brooks
et al., 2003). Under anoxic conditions, U(IV) is stable in
the form of the mineral uraninite (UO2(s)), but upon expo-
sure to oxidizing conditions, uraninite is prone to oxidation
(Langmuir, 1978). The susceptibility of uraninite to oxida-
tion makes it potentially unstable in subsurface environ-
ments (Fayek et al., 2002). As a result, remediation
approaches that rely on U(VI) reduction to U(IV) may pro-
vide only temporary results if the redox conditions cannot
be sustained.

In addition to redox reactions, adsorption/desorption,
precipitation/dissolution, and complexation reactions also
influence the fate of uranium in natural environments
(Langmuir, 1978). Uranyl readily adsorbs to iron oxide
minerals and can form complexes with organic matter as
well as with inorganic ligands (Elless and Lee, 1998). In car-
bonate environments, strong aqueous complexes (e.g.,
UO2ðCO3Þ

2
2�) are formed that enhance U(VI) mobility

(Langmuir, 1978). If sufficient phosphate is present, uranyl
can also precipitate in phosphate minerals, such as autunite
(Ca(UO2)2(PO4)2), which are stable at pH values ranging
from 5 to 8.5 (Langmuir, 1978).

Due to the vast scope of environmental contamination
by uranium there is intense interest in the development of
effective remediation methods. Bioremediation methods
are among those that have attracted attention in recent
years (Finneran et al., 2002; Istok et al., 2004; Lovley,
1995). Bacteria can affect the fate of uranium in subsurface
environments by a variety of mechanisms, including direct
or indirect reduction of U(VI) to U(IV), oxidation of
U(IV) to U(VI), sorption and/or accumulation of U(VI)
by cells, and release of phosphate that induces precipitation
of U(VI) in phosphate minerals.

Microbial reduction of hexavalent uranium has been
studied extensively with metal and sulfate-reducing organ-
isms such as Geobacter metallireducens, Shewanella putre-

faciens, Desulfovibrio spp., Cellulomonas spp., Desulfosp

orosinus spp., and Deinococcus radiodurans (Fredrickson
et al., 2000a,b; Gorby and Lovley, 1992; Spear et al.,
1999; Sani et al., 2002, 2004; Suzuki et al., 2003, 2004). Indi-
rect reduction of U(VI) can be mediated by humic acids
(Gu et al., 2005), the electron-shuttling humic acid analog,
anthraquinone-2,6-disulfonate (AQDS), or Fe(II) (Fred-
rickson et al., 2000a,b). Other research has shown that bac-
teria may be effective biosorbents for uranium. Rapid
removal of UO2

2þ from solution was seen in the presence
of Pseudomonas fluorescens (Bencheikh-Latmani et al.,
2003) and Bacillus subtilis (Fowle et al., 2000), and the
mode of uranium removal was postulated to be adsorption
to the cell wall. A recent study has suggested the removal of

U(VI) in microbially-reduced sediments could be attributed
to the U(VI) sorptive capacity of bacteria in the phylum
Firmicutes (N’Guessan et al., 2008). An Arthrobacter iso-
late from a uranium-contaminated site was capable of accu-
mulating uranium intracellularly as precipitates closely
associated with polyphosphate granules (Suzuki and Ban-
field, 2004). Other studies have examined the role of phos-
phatase in the bioprecipitation of uranyl phosphate
resulting from hydrolysis of polyphosphate ( Macaskie
et al., 1992; Thomas and Macaskie, 1996; Basnakova
et al., 1998) and secretion of phosphate by Citrobacter sp.
and Pseudomonas aeruginosa (Macaskie et al., 2000; Renn-
inger et al., 2004). More recently, Rahnella and Bacillus iso-
lates from the FRC were shown to hydrolyze glycerol-3-
phosphate and precipitate uranyl as an autunite mineral
in aerobic cell suspensions (Beazley et al., 2007). Cellulo-
monas strain ES6 has shown the ability to remove soluble
uranium from solution by U(VI) reduction and uranyl
phosphate precipitation mechanisms (Sivaswamy et al.,
2011). It appears that numerous organisms are capable of
immobilizing U(VI) by one or more mechanisms, although
the current literature generally highlights only single mech-
anisms for organisms that are studied. It is possible that
multiple processes operate simultaneously, which is impor-
tant not only with respect to treatment effectiveness, but
also with respect to understanding the best approach for
treatment and susceptibility to reversal.

In situ biological treatment is an attractive option for the
remediation of uranium-contaminated sites because it could
potentially be less expensive and less disruptive than tradi-
tional ex situ technologies, and it relies on indigenous
microorganisms to achieve clean-up of hazardous wastes
(NABIR, 2003). Recent studies have demonstrated the suc-
cessful use of carbon substrate amendments to stimulate
reduction of U(VI) by indigenous microbial communities
during in situ bioremediation field tests (Senko et al.,
2002; Istok et al., 2004; North et al., 2004; Chang et al.,
2005; Vrionis et al., 2005; Wu et al., 2006, 2007).

As part of an effort to identify and characterize indige-
nous microorganisms with the potential to be used for
in situ bioremediation, we isolated strain UFO1 from sedi-
ments at the FRC in Oak Ridge, TN. UFO1 is a novel rep-
resentative of the newly described genus of fermentative
bacteria, Pelosinus, with demonstrated metal-reducing
capabilities (Ray, 2007; Ray et al., 2010). UFO1 was iso-
lated from pristine sediments collected from the back-
ground area of the FRC. Clones with high 16S rRNA
gene sequence similarity to strain UFO1 have been detected
in Fe(III)-reducing enrichments (Petrie et al., 2003) and sul-
fate-reducing enrichments initiated with U(VI)-contami-
nated FRC sediments (Nyman et al., 2007). Here, we
report on our studies that show cell suspensions of UFO1
can affect uranium speciation and can remove U(VI) from
aqueous solution. We examined the mode of U(VI) removal
using X-ray absorption spectroscopy (XAS) and transmis-
sion electron microscopy coupled with energy dispersive
spectroscopy (TEM-EDS) to characterize U-containing
precipitates formed in cell suspensions treated with
100 lM U(VI) in the presence and absence of the humic
acid analog, AQDS. Our results indicate that UFO1 can
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mediate aqueous U(VI) removal via both reductive and re-
dox-neutral mechanisms. These findings support the poten-
tial for fermentative bacteria to play a role in remediation
of environments contaminated with uranium.

2. METHODS

2.1. Cultures and media

Strain UFO1 was routinely cultured in anoxic R2 broth
at 30 �C. R2 broth was prepared from a dry mix (BD Diag-
nostic Systems, Franklin Lakes, NJ) or as follows (per li-
ter): 0.5 g yeast extract; 0.5 g proteose peptone; 0.5 g
casamino acids; 0.5 g glucose; 0.5 g soluble starch; 0.3 g so-
dium pyruvate; 0.3 g K2HPO4; 0.05 g MgSO4 (Reasoner
and Geldreich, 1985) and adjusted to pH 7. Anoxic R2
broth was prepared by boiling and cooling under a head-
space of N2, dispensing into anaerobic pressure tubes, ser-
um vials, or flasks with a headspace of N2, sealing with
thick butyl-rubber stoppers, and autoclaving.

The removal of soluble U(VI) from solution by strain
UFO1 was evaluated using a bicarbonate-buffered medium.
Anaerobic bicarbonate buffer (30 mM NaHCO3; 1.3 mM
KCl) was prepared by boiling, then cooling and bubbling
under an O2-free stream of N2:CO2 (80:20), and autoclav-
ing. The bicarbonate buffer had a final pH of 7. Bicarbonate
buffer was used for washing and re-suspending cells. All
glassware for uranium removal experiments was acid-
washed in 10% HNO3 and thoroughly rinsed in deionized
water.

2.2. Uranium removal and phosphate release experiments

For uranium removal experiments, cells were grown for
24 hours in R2 broth with reduced phosphate content
(0.003 g/L vs. 0.3 g/L K2HPO4). Cells were harvested by
centrifugation at 8000g for 20 min. The supernatant was
discarded and the cell pellets were suspended in anaerobic
bicarbonate buffer that was free of added phosphate with
all transfers occurring in an anaerobic glove box (90%
N2; 5% H2; 5% CO2). This process was performed three
times and the cells were then re-suspended under non-
growth conditions in sterile 30 mM bicarbonate buffer at
pH 7 prior to the uranium removal experiments. Batch
experiments were performed in duplicate for each treatment
and were initiated by addition of washed-cell suspension to
25 mL serum vials that contained bicarbonate-buffered
medium with U(VI) (100 lM) for a total liquid volume of
20 mL and a final concentration of 0.7 mg (dry weight) cells
UFO1/mL (�108 cells/mL). Dry cell weight analyses were
performed by filtering 0.5 mL of sample through a pre-
weighed 0.2 lm Supor� membrane syringe filter (Gelman
Acrodisc). Samples from cell free controls were also filtered
to ensure no change in weight due to the buffer itself. The
filters were dried at 60 �C for 3 days, until a constant weight
was observed (Gerhardt et al., 1981). Uranium was added
in the form of uranyl chloride trihydrate, UO2Cl2�3H2O
(Bodman, Aston, PA). The cell suspensions were incubated
at 25 �C and shaken at 75 rpm. For studies with AQDS,
cells were re-suspended in 30 mM bicarbonate buffer at

pH 7 containing 100 lM AQDS (Fisher, Pittsburg, PA)
along with the uranium (100 lM). In addition to cell- and
uranium-free controls, heat-killed cell controls were in-
cluded in the experimental matrix. For heat-killed cell con-
trols, aliquots of washed cell suspension were transferred to
an anaerobic serum bottle in the glove box, sealed with bu-
tyl rubber septa, capped, crimped with an aluminum seal,
and autoclaved prior to adding medium with U and AQDS.
Each set of treatment conditions was prepared in duplicate,
and the treatments containing cells + 100 lM U(VI),
cells + 100 lM U(VI) + 100 lM AQDS, and cell-free con-
trols were repeated in separate experiments to verify
reproducibility.

Removal of U(VI) from solution was evaluated by mon-
itoring U(VI) concentration in unfiltered samples (0.2 mL)
withdrawn by syringe and needle and measured immedi-
ately by kinetic phosphorescence analysis (KPA). Samples
were diluted with anoxic, deionized (DI) water 1000-fold,
and 1 mL of the diluted sample was mixed with 1.5 mL of
Uraplex complexing agent (Chemchek, Richland, WA)
prior to analysis with a KPA instrument (Chemchek);
KPA measurements were performed immediately following
sample collection in order to minimize the potential for re-
oxidation to U(VI). Calibrations were performed using ura-
nyl chloride solutions from 0 to 0.23 lM, yielding a U(VI)
detection limit of 0.04 lM with a precision of ±5%. Sam-
ples (0.5 mL) for inorganic phosphate (Pi) analysis were
withdrawn from the serum vials by syringe and needle
and centrifuged at 10,000 g for 8 min. Inorganic phosphate
(Pi) concentrations in the supernatant were determined
spectrophotometrically using Phosver� 3 Phosphate re-
agent (Hach, Loveland, CO) and measurement at 880 nm
on a UV–Vis spectrophotometer (Milton Roy Company
Spectronic� GENESYS 5TM, Rochester, NY).

2.3. Characterization of immobilized uranium phases

2.3.1. X-ray absorption spectroscopy (XAS)

X-ray Absorption Near Edge Structure (XANES) and
Extended X-ray Absorption Fine Structure (EXAFS) spec-
troscopic methods were employed to determine the oxida-
tion state of uranium and local atomic structure around
uranium atoms. For these experiments, uranium was added
in the form of uranyl acetate dihydrate, UO2(CH3-

COO)2�2H2O (Ted Pella, Inc., Redding, CA), because we
were unable to obtain additional UO2Cl2�3H2O for these
studies and strain UFO1 is not capable of utilizing acetate
as an electron donor. Samples for XANES and EXAFS
were prepared using protocols similar to those described
above for the uranium removal experiments, except for
the scale-up to a total volume of 100 mL to obtain sufficient
sample for analysis by XANES and EXAFS. Cells of strain
UFO1 were grown on R2 broth for 18–24 h, harvested by
centrifugation at 10,000 g, washed three times, and resus-
pended in bicarbonate buffer free of added phosphate; all
transfers were performed in an anaerobic glovebag. Ali-
quots of the washed cell suspension were added by syringe
and needle to sterile, sealed 150-mL vials to give a final vol-
ume of 100 mL in bicarbonate buffer containing 100 lM
U(VI), and in certain treatments, 100 lM AQDS. Cell sus-
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pensions (�1 mg dry weight of cells/mL; �108 cells/mL)
were incubated 5–6 days with shaking at 25 �C.

To prepare the reacted samples for XANES/EXAFS,
the 100 mL cell suspensions were transferred to 250 mL
screwcap centrifuge tubes with rubber o-rings. These were
centrifuged at 10,000 g, and approximately 90 mL of the
supernatant were discarded. The resulting cell pellets were
resuspended in the remaining fraction of the spent reaction
medium/supernatant. Approximately 10 mL of concen-
trated cell paste were transferred anaerobically to 15 mL
serum vials, which were then sealed with rubber stoppers
and crimped with aluminum caps. Vials were placed in an-
oxic secondary containers and shipped to the Stanford Syn-
chrotron Radiation Lightsource (SSRL). At SSRL, the cell
paste was centrifuged in order to obtain a moist pellet with
an approximate volume of 250–500 ll. Pellets were har-
vested in 1.5 mL conical eppendorf tubes with screw cap
and o-ring seal. All manipulations were performed under
anaerobic conditions, and pelleted samples were stored in
an anaerobic chamber until analysis.

Transmission- and fluorescence-geometry uranium LIII
edge XANES and EXAFS spectra were collected at room
temperature as described previously (Bargar et al., 2000;
Redden et al., 2001; Bencheikh-Latmani et al., 2003) at
SSRL Beam Line 11-2. Fluorescence data were recorded
using a Lytle-type ionization chamber detector (Stern and
Heald, 1979). A variable-exit geometry double-crystal
Si(220) monochromator was detuned to mitigate harmonics
in the X-ray beam. XANES and EXAFS spectra were re-
duced and processed using SixPACK software Version
0.60 (Webb, 2004, 2005). Monochromator calibration was
performed using the K absorption edge of a Y foil, checked
every few scans. The change in energy calibration observed
throughout the entire data collection period was 0.1 eV.
The spectra were modeled as linear combinations (LCs)
of spectra from reference minerals thought likely to be rep-
resentative of species in this system: UO2.00, obtained from
David Clark at LANL, autunite (Ca(UO2)2(PO4)2�10�H2O)
corresponding to sample UHA-9 in Fuller et al. (2002), and
cell-sorbed uranyl obtained from a previous study with P.

fluorescens (Bencheikh-Latmani et al., 2003). Shell-by-shell
fits to the EXAFS were performed using IFEFFIT (New-
ville, 2001). FEFF 8 (Rehr et al., 1992) phase and ampli-
tude functions were used to fit the EXAFS.

2.3.2. TEM-EDS elemental analysis

In addition to XAS, transmission electron microscopy
was used to characterize the precipitates formed in U(VI)-
containing cell suspensions, and energy dispersive spectros-
copy coupled with TEM (TEM-EDS) was performed to
provide an elemental analysis of precipitates formed. Sam-
ples were prepared anoxically for TEM-EDS as described
previously (Sani et al., 2006). All sample preparation was
performed in an anaerobic (5% CO2; 65% H2; N2 balance)
glovebag (Coy Laboratory Products, Grass Lake, MI).
Briefly, cell pellets were harvested by centrifugation of 1–
3 mL aliquots from 100 mL batch cultures of UFO1 treated
with U(VI) (as described above for XAS), washed in an-
oxic, sterile ultrapure water, and then fixed in an anoxic
stock of 3% glutaraldehyde for a minimum of 12 hours.

Fixed cells were pelleted and washed three times in anoxic
DI water, followed by a gradual ethanol dehydration series
(33%, 55%, 70%, 90%, and 100% ethanol). Cells were
embedded in LR White resin (Electron Microscopy Sci-
ences, Hatfield, PA), and polymerized at 60 �C overnight.
Embedded samples were sectioned to 70 nm on an ultrami-
crotome (Leica Ultracut UCT; Leica Microsystems, Ban-
nockburn, IL), and sections were mounted on 200-mesh
copper grids coated with Formvar support film sputtered
with carbon. Sections were examined using a JEOL 2010
high resolution TEM (JEOL, Peabody, MA) with a LaB6

filament at 200 kV with resolution of 0.19 nm. Elemental
analysis was performed with an Oxford EDS system (Ox-
ford Instruments) equipped with an SiLi detector coupled
to the TEM, and spectra were analyzed with ISIS software
(Oxford Instruments). Images were collected and analyzed
using Digital Micrograph software (Gatan Inc., Pleasanton,
CA).

3. RESULTS AND DISCUSSION

3.1. Uranium removal and phosphate release experiments

The decrease of soluble U(VI) in cell suspensions con-
taining 0.7 mg (dry weight) cells UFO1/mL is shown in
Fig. 1. The concentration of soluble U(VI) decreased in
treatments containing live cells of strain UFO1 in all of
the conditions tested. Time-series uranyl profiles for treat-
ments with and without 10 mM lactate were nearly identi-
cal, and the presence of lactate did not affect the U(VI)
reduction kinetics, suggesting that lactate oxidation was
not coupled to respiration of U(VI). Strain UFO1 does uti-
lize lactate as an electron donor for fermentation (Ray,
2007), and the reduction of U(VI) may result from its use
as an electron sink during fermentative metabolism. The re-
moval of soluble U(VI) in the absence of an externally pro-
vided electron donor was previously reported for
Cellulomonas isolates (Sani et al., 2002), and it was sug-
gested that the use of an endogenous electron donor may
have been responsible for soluble U(VI) removal via reduc-
tion reactions. Under growth conditions, microorganisms
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can accumulate energy storage polymers such as poly-b-
hydroxybutyrate (PHB) that serve as carbon and energy re-
serves when other sources are not available (Bormann,
2000; White, 2000).

The presence of 100 lM AQDS, in the absence of lac-
tate, enhanced the removal rate of soluble U(VI) as com-
pared to treatments without AQDS, although not the
final extent. Reduction of AQDS by cell suspensions of
strain UFO1 was indicated by a visible color change from
transparent, pale yellow to orange (Liu et al., 2007). This
suggests involvement of an endogenous electron donor for
AQDS reduction by strain UFO1. The reduced form of
AQDS, AH2DS, can transfer electrons to U(VI). The
AH2DS- mediated reduction of U(VI) has been reported
for D. radiodurans R1 and S. putrefaciens (Fredrickson
et al., 2000a,b). The effective reduction potentials for the
AQDS-AH2DS (�2.40 V) and the UO2ðCO3Þ

4�
3 –UO2

(+0.078 V) couples were calculated previously for similar
experimental conditions (Fredrickson et al., 2000a,b), and
results suggested that electron transfer from AH2DS to
UO2ðCO3Þ

4�
3 was thermodynamically favorable. The reduc-

tion of AQDS by strain UFO1 and enhanced removal rate
of soluble U(VI) in AQDS-containing treatments suggest
that uranium removal under these conditions may result
from a shuttle-mediated reduction mechanism.

Changes in soluble ortho-phosphate concentrations over
time are shown in Fig. 2. A low amount of soluble phos-
phate was measured in suspensions containing heat-killed
cells (44 ± 3 lM), but there was no significant change in
soluble phosphate concentration over the course of the
experiment. There was no added source of phosphate pres-
ent in the bicarbonate-buffered medium; this was confirmed
by inclusion of a cell-free control in which the phosphate
concentration was nearly zero (3 ± 0 lM). Taken together,
these data suggest that the increase in phosphate concentra-
tions seen in non heat-treated cell suspensions was biologi-
cally mediated. Differences were seen in the final
concentration of ortho-phosphate for treatments incubated

with and without U(VI). Washed cells incubated in the ab-
sence of U(VI) and without an added carbon source had the
highest average concentration of inorganic soluble phos-
phate at the end of the experiment, 379 ± 31 lM. In com-
parison, in cell suspensions where U(VI) was present (but
no AQDS), the corresponding ortho-phosphate concentra-
tion was 243 ± 1 lM. When 100 lM AQDS was present
along with the U(VI), the final ortho-phosphate concentra-
tions were intermediate between the two, at 298 ± 6 lM.
Taken together, these findings suggest that the presence of
U(VI) minimizes final average concentrations of inorganic
phosphate in solution, while the potential for reductive pro-
cesses seem to lessen this effect—i.e., more soluble phos-
phate remains.

Phosphate release by UFO1 may result from the hydro-
lysis of polyphosphate granules that were accumulated un-
der favorable growth conditions (e.g., growth on R2 broth).
Acinetobacter spp. have the ability to accumulate large
amounts of phosphate as polyphosphate granules that can
be used as an energy reserve under conditions where re-
sources are limited (van Groenestijn et al., 1989); hydrolysis
of polyphosphate produces ATP and inorganic phosphate
is liberated from the cells (van Groenestijn et al., 1987).
Cellulomonas sp. strain ES6 has also been shown to release
phosphate under anaerobic conditions in the absence of an
externally provided carbon source (Sivaswamy et al., 2011).
The greater extent of phosphate release observed for UFO1
cells deprived of lactate, whether U(VI) was present or not,
compared to cells provided with lactate (Fig. 2), is consis-
tent with these findings.

3.2. Characterization of immobilized uranium phases

3.2.1. XAS

X-ray absorption spectra were acquired for cell suspen-
sions treated with 100 lM U(VI) in the absence and pres-
ence of 100 lM AQDS after 5 days of incubation. The U
LIII-edge XANES spectra for the samples were fit using a
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linear combination of spectra for two reference compounds,
autunite and UO2.00 (Fig. 3). In the sample without AQDS,
17 ± 10% of the uranium was found to be U(VI), and
83 ± 10% was determined to be in the U(IV) oxidation
state. In the sample treated with 100 lM AQDS, the ura-
nium was found to be 100 ± 10% U(IV). These results sug-
gest that, regardless of the presence of an electron-shuttling
moiety, uranium species after incubation with UFO1 were
primarily in the reduced form (U(IV)) and reduction was
the predominant mechanism for U(VI) removal under the
conditions tested.

U LIII-edge EXAFS spectra for UFO1 treated with
100 lM U(VI) in the presence and absence of AQDS are
shown in Fig. 4. The EXAFS spectra for these samples dif-
fer significantly in the region between 6 and 9 Å�1, where
the positive antinode of the no AQDS spectrum has sub-
stantially larger amplitude than that of the 100 lM AQDS
sample. Differences between these two samples are expected
from the results from XANES analyses. To test the hypoth-
esis that the inventory of U(VI) in the no-AQDS sample
was present as a U(VI) phosphate precipitate, its EXAFS
spectrum was fit using a linear combination of EXAFS
from autunite and the AQDS sample. The latter spectrum
provides a representation of a fully reduced sample, i.e.,
no uranyl phosphate present. A good reproduction of the
EXAFS of the no-AQDS sample was obtained. The fit indi-
cated that 17% of U in the sample was consistent with a
uranyl phosphate (autunite). This result agrees well with
the XANES-derived conclusion that 17% of U was present
as U(VI) in this sample. To qualitatively assess the sensitiv-

ity of the data to the fit, linear combination fits were also
applied using schoepite and rutherfordine in place of autun-
ite. As shown in Fig. EA-1, both fits were significantly
worse than obtained with autunite. EXAFS spectra of
U(VI) phosphates are generally similar to each other (Fuller
et al., 2002); hence, this result does not lead to unambigu-
ous identification of autunite, but does provide evidence
for the presence of a member of the autunite mineral fam-
ily. These results suggest that a partial explanation for the
removal of soluble U(VI) from cell suspensions in the ab-
sence of an exogenous electron donor could be the precipi-
tation of U(VI)-containing minerals; Sivaswamy previously
reported the precipitation of a U(VI) phosphate phase by
Cellulomonas strain ES6 (Sivaswamy et al., 2011). Linear
combination fits were also attempted using reference spec-
tra for U(VI) surface complexes on cells of P. fluorescens

(Bencheikh-Latmani et al., 2003); these spectra were used
because attempts to prepare analogous samples of U(VI)
sorbed onto aerobic live and heat-killed cell suspensions
of strain UFO1 for EXAFS analysis were unsuccessful.
This component however did not appear to contribute to
the no-AQDS EXAFS spectrum, suggesting that biomass-
sorbed U(VI) was below the detection limit in the samples.

The chemical and physical nature of the U(IV) in the
AQDS-reacted sample (Fig. 4, spectrum a) remains unclear.
Qualitative inspection of the Fourier Transform of the EX-
AFS spectrum from the 100 lM AQDS sample (Fig. 5)
shows the absence of the 3.8 Å peak (R + dR) that is char-
acteristic of UO2 (Schofield et al., 2008), suggesting that
uraninite is not present above the detection limit (ca 10–
20% of total U). If UO2 was not present, then it must be
concluded that U(IV) is present as a molecular complex
sorbed to biomass (Senko et al., 2007; Kelly et al., 2008;
Bernier-Latmani et al., 2010; Fletcher et al., 2010) or pres-
ent as a different mineral (Bernier-Latmani et al., 2010).
Biomass on which sorption could occur is abundant, mak-
ing this a reasonable conclusion. To test this hypothesis,
shell-by-shell EXAFS fits were performed on the AQDS-re-
acted sample. The EXAFS are dominated by an O shell
with a corresponding FT peak at ca 1.75 Å (R + dR) (FT
peak values are phase-shifted relative to the physical
arrangement of atoms and are thus denoted as R + dR).
A secondary, smaller FT peak occurs at ca 2.9 Å
(R + dR). EXAFS were fit up to 9.5 Å�1. The spline was
truncated at 10.2 Å�1 to mitigate the impact of an LIII-N
multi-electron excitation in the data at this location (Hen-
nig, 2007). The O shell could be fit as a single shell of oxy-
gens at 2.29 Å (Table 1), which is generally consistent with
8-coordinated U(IV). Shells of neighboring atoms at dis-
tances beyond the O shells are expected to arise from strong
metal binding functional groups present on biomass, i.e.,
carboxylate and phosphoryl (Kelly et al., 2001; Kelly
et al., 2002; Senko et al., 2007), or neighboring shells of P
or U atoms that may occur if solid phases such as uraninite
or phosphates precipitated. Uraninite can be neglected be-
cause the characteristic FT peak at ca 3.8 Å (Schofield
et al., 2008) is not present. Moreover, when the 2.9 Å
(R + dR) FT peak was fit with a U shell, then a distance
of ca 3.2 Å was obtained, which is not physically realistic
(Burns et al., 1997; Catalano and Brown, 2004). Uranyl

Fig. 3. ULIII-edgeXANES spectra for uraniumprecipitates formed

in cell suspensions of strain UFO, and for reference materials

uraninite and meta-autunite. Dotted points show fit results.
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phosphates can be ruled out because this sample contains
almost exclusively U(IV). The 2.9 Å (R + dR) FT frequency
was therefore fit with either P and C shells. The statistical R

factors for these fits were 3.68 and 4.14, respectively (as cal-
culated according to Eq. (1) in Hamilton (1965). The differ-
ence in these R factors is not statistically significant, and
therefore these results cannot be used to conclusively distin-
guish the identity of the 2nd shell. The 3.59 Å U–P distance
is consistent with monodentate coordination of U to phos-
phate groups (e.g., (Albering and Jeitschko, 1995; Dusau-
soy et al., 1996; Burns, 1999). A U–C shell at 3.41 Å is
consistent with ring structures that can be formed by mul-
tifunctional carboxylic acids (e.g., citrate). Both fits un-
der-predict that amplitude of the frequencies between 2
and 3 Å (R + dR), suggesting that an additional shell of
atoms may be present at that location. We note that addi-
tion of a shell of either C atoms at 2.91 Å or P atoms at
3.09 Å fits this missing amplitude. Such shells do not signif-

Fig. 4. U LIII-edge EXAFS of uranium precipitates obtained from cell suspensions of strain UFO1 incubated with 100 lMU(VI) and 100 lM

AQDS (a) and in the absence of AQDS (b). Meta-autunite was used as a model compound (c). The dotted line in (b) shows the obtained linear

combination fit of the data with spectra from (a) 81% and (c) 19%, respectively (IFEFFIT R factor = 0.031).

Fig. 5. U LIII-edge EXAFS (left-hand side) and Fourier transform (right-hand side) of the 100 lM AQDS sample.

Table 1

EXAFS fit results for the 100 lM AQDS sample. One standard-

deviation uncertainties in last reported digit are given in parenthe-

ses. Data fit range was 3 6 k 6 9 Å�1, 1 6 R 6 6 Å, and S0
2 was set

to 0.9. Columns 2 (C) and 3 (P) represent alternative fits in which

the corresponding frequency was first fit using C, and then

separately fit using P.

O C or P

N (atoms) 6.6 (1.5) 2.6 (1.0) 0.9 (5)

R (Å) 2.30 (2) 3.41 (4) 3.57 (4)

r
2 (Å2) 0.017 (3) 0.006 0.006
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icantly improve the fit quality, and hence are not discussed
further here.

3.2.2. TEM-EDS elemental analysis

In addition to XANES and EXAFS, TEM-EDS was
employed to ascertain a chemical signature for uranium
precipitates in cell suspensions of strain UFO1. Fig. 6
shows transmission electron micrographs of strain UFO1
cells following exposure to 100 lM U(VI) in the absence
of AQDS in bicarbonate buffer. Regions of high contrast
following the shape of the cell membrane (Fig. 6a and c)
or in the shape of granules located within the cytoplasm
(Fig. 6b) are assumed to be stable uranium precipitates.
About 200 cells were examined, the majority of which ap-
peared to have intracellular deposition of electron dense
uranium precipitates with preferential deposition in the
cytoplasmic area. The EDS analyses, while semi-quantita-
tive, provided an indication of the chemical composition

of the thin, needle-like structures within the cell shown in
Fig. 6d and e. Following subtraction of the P background
from electron dense areas (it was negligible in clean areas
of the cell cytoplasm), the EDS analysis of the structures
indicated a composition of 23% O, 12% P, and 75% U (ele-
ment wt.%), corresponding to at.% values of 79% O, 18% P,
and 13% U. The results suggest that the needle structures
have a 1:1 atomic ratio for U:P, consistent with uranyl
phosphate minerals such as autunite (Ca(UO2)2(PO4)2),
although the EDS did not detect the presence of Ca. An-
other possible phosphate structure could be (UO2)3(-
PO4)2�4H2O given that the 1:1 atomic U:P ratio was an
average for the sample, and variability exists within the
range of measurements. The formation of such needle-like
structures upon uranyl phosphate precipitation was re-
ported previously for Cellulomonas sp. (Sivaswamy et al.,
2011). The absence of visible evidence for the U(IV) molec-
ular complexes implicated by the XAS analyses could be

Fig. 6. (a, b and c)-Typical TEM cross-sections of cells treated with 100 lM U(VI) in the absence of AQDS showing intracellular uranium

deposition along the plasma membrane and cytoplasm; in (b), x denotes structures characteristic of U(IV) deposition, and y denotes needle-

like structures characteristic of U(VI) phosphate precipitates; (d) shows the cross-section of a cell containing sheets of needle-like material; (e)

shows magnification of the inset shown in (d); (f) EDS spectrum of the precipitates circled in (e). Copper peaks at 8–9 keV are characteristic of

the grid. The spectrum shows clear U, P, and O signals.
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attributed to their being spread out over the biomass at rel-
atively low concentrations, and thus undetectable with
TEM.

TEM images of cells treated with U(VI) in the presence
of AQDS are shown in Fig. 7. The majority of cells had a
slight accumulation of electron dense material within their
cytoplasm (Fig. 7a and b), and a small fraction of cells
had periplasmic and outer membrane deposition. Less than
10% of the 200 cells examined from this treatment exhibited
accumulation of the needle-like structures characteristic of
uranium phosphate precipitates that were seen in the ab-
sence of AQDS (Fig. 6d and e). Extracellular accumulation
of uranium material was evident in the AQDS-treated sam-
ple (Fig. 7c–e); uranium apparently associated with strands
of extracellular polymeric substances (EPS) was observed in
addition to the uranium material directly associated with
the cells (Fig. 7e, inset from Fig. 7d). The EDS spectrum
of the granules that comprised the majority of the uranium
associated with the cells showed U, O, and P signals
(Fig. 7g); however, the P signal was much lower than de-
tected in the needle-like structures in Fig. 6e. The material

appeared similar to previous observations of nanocrystal-
line uraninite particles bound to EPS (Dohnalkova et al.,
2005; Marshall et al., 2006), although as noted previously,
the EXAFS indicated that U(IV) was present predomi-
nantly as molecular complexes associated with biomass,
and UO2, if present, represents only a small fraction of total
U(IV) present in the sample.

4. CONCLUSIONS

The results presented here demonstrate the removal of
soluble U(VI) by a novel environmental isolate, strain
UFO1. Analysis of the solid phase precipitates associated
with cell matter suggests that most of the U(VI) was re-
duced to U(IV) present as monomeric sorption complexes
on the biomass. In the absence of the electron shuttling
moiety, AQDS, some precipitation of uranyl phosphate
minerals also occurred. TEM images combined with EDS
spectra demonstrate that solid-phase uranium was accumu-
lated both intra- and extracellularly. U(VI) removal by di-
rect sorption to the cells appeared to be negligible.

Fig. 7. (a, b and c)-Transmission electron micrographs of cells treated with 100 lMU(VI) and 100 lMAQDS; (a and b) intracellular uranium

deposition in the cytoplasm and cell membrane; (c) extracellular uranium deposition; (d, e and f-insets) extracellular uranium deposition

characteristic of nanocrystalline uraninite and association with EPS matrix; (g) EDS spectrum of the precipitates (f) shows clear U and O

signal. Copper peaks at 8–9 keV are characteristic of the grid.
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Ongoing experiments at the FRC have demonstrated that
in situ bioreduction of U(VI) can result in levels of aqueous
U that are in compliancewith themaximumcontaminant level
(MCL);however, aqueousUconcentrations reboundupon re-
entry of dissolved oxygen into the system (Wu et al., 2007).
Due to this vulnerability associated with bioreduction
schemes, phosphate mineral-based methods for uranium
immobilization have recently gained more attention because
of their lack of a requirement for redox control. However, a
major challenge for phosphate-based remediation approaches
is the distributionof phosphate in the subsurface; its extremely
high reactivity can lead to clogging of the injection well and
consequently a limited treatment radius (Wellman et al.,
2006). Other researchers have proposed the use of precursor
compounds such as glycerol-3-phosphate (Beazley et al.,
2007; Shelobolina et al., 2009) or polyphosphate (Wellman
et al., 2006) that can be transformed in situ to release phos-
phate in the subsurface. UFO1 has shown the ability to medi-
ate removal ofU(VI) from solution via both bioreduction and
phosphatemineral precipitation. In the caseofUFO1, internal
reserves of phosphatewere likely involved in the observedura-
nium immobilization, rather thandegradationof an externally
provided precursor compound. Additional research on the
mechanisms involved in the phosphate mineral formation
pathway is needed in order to ascertain whether this phenom-
enon can be controlled and enhanced to the levels needed for
field-scale uranium remediation. If so, remediation ap-
proaches couldpotentially bedevelopedwithUFO1or similar
organisms that combine exploitation of the bioreductive
mechanism for rapid but short-term U immobilization and
reliance on the phosphate mineral precipitation mechanism
for more robust long-term sequestration.
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