
Another Report by the AAPG EMD Uranium (Nuclear Minerals) Committee

Michael D. Campbell, P.G., P.H.

President of the Energy Minerals Division of AAPG, Chair of the Uranium (Nuclear and REE) Committee, and Chief Geologist/Chief Hydrogeologist
I2M Associates, LLC
Houston and Seattle

Presentation to the Ohio Geological Society
Ramada Plaza Hotel & Conference Center 4900 Sinclair Rd., Columbus, Ohio

AAPG, Energy Minerals Division
April 21, 2011

Version 1.3
Introduction

In this presentation, I will first briefly discuss the recent activities of the Energy Minerals Division of AAPG and of its various commodity committees. I will then discuss a range of topics involving uranium exploration and nuclear power. This will range from the pros & cons of nuclear power to public concerns, and to exploration, development and production practices and anticipated yellowcake prices. I will then discuss the typical concerns still expressed by many anti-nuclear groups and by the media serving them, including various unrealistic expectations they hold, various forms of mis-information they believe, and various half-truths they circulate.

With the above as background, I'll summarize current conditions and our expectations on the energy picture over the next 30 years, specifically to generate electricity in the U.S., in terms of both small- and large-scale nuclear plants, and in terms of the future source of nuclear fuel (yellowcake as precursor to the fuel) produced in the U.S. and overseas, where new deposits are being discovered at an increasing rate, and perhaps even on the Moon in the foreseeable future.

Interest in nuclear power continues to grow in the U.S. with more than 50 permit applications now under review for building new plants. Nations around the world are looking to increasing their use of nuclear energy to generate greenhouse gas emission-free electricity because it is the cleanest technology available that is capable of producing the amount of electricity required at a competitive cost. With this increase in interest, there has been an increase in uranium exploration and production, with new exploration targets and new and old mines being opened as the market price of yellowcake begins to increase.
The renewed activity has also encountered an equally increased resistance from a few adversarial groups, especially in Texas, New Mexico, and Colorado. These groups base their objections on exploration and mining techniques and mining laws that were in effect 30 years ago and more. Unfortunately, many in the news media have been reporting on these complaints without regard to important improvements in exploration and uranium recovery techniques, and environmental protection laws. This has led the general public to believe that uranium exploration and recovery will poison both land surface and underlying aquifers over vast areas. Typical concerns by environmental advocacy groups and associated media often claim that no in-situ uranium recovery operations ever remediated the mined area to its original condition and that the companies all had to amend their permits. None of this is true, of course.

The disaster in Japan involving major earthquakes, and followed by major tsunamis that took away even the back-up power supplies that operated the pumps that normally keep the spent fuel rods cooling, has even damaged the Fukushima Daiichi Nuclear Power Plant, which has leaked some radioisotopes into the air and the ocean nearby. All indications suggest that this too will pass without many casualties, and that the nuclear industry will learn from this and return to a renewed construction program on the large base of nuclear power plants that will be needed in the U.S. over the next 30 years.

They also claim that there are health risks living around in situ uranium facilities and release radiation into the air, which increases human cancer rates. In addition, they also claim that nuclear power isn't really carbon-free because the associated environmental costs of in-situ uranium recovery operations are not being fully assessed, such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues, claiming that significant gaps remain in complete sustainability reporting and accounting. None of this is true, of course. I will evaluate these misconceptions in some detail.
But first... a few words from our sponsor...

The Energy Minerals Division (EMD) of the AAPG is pleased to underwrite this presentation as part of your benefits as an Affiliate Society of The American Association of Petroleum Geologists (AAPG) and the Eastern Section of the AAPG.

- Pros & Cons of nuclear power
- How to treat public concerns, well meaning or otherwise biased.
- The current state of exploration, development and production practices and anticipated yellowcake prices.
- What’s in the future for Energy Resources?
EMD Support of AAPG ACE & ICE:

- **Houston ACE - 2011**
  - 20 EMD-Sponsored Sessions,
  - 6 Short Courses - Ranging from Shale Gas, Geothermal in the O&G Industry, to Hydraulic Fracturing, and others.
  - 1 Field Trip – Growth Faulting at the Surface in the Houston Area.
  - Recent meeting in Houston broke attendance records for the past 20 years (~ 8,200).

- **Milan ICE - 2011**
- **Singapore ICE - 2012**
- **Long Beach - 2012**
- **Pittsburg - 2013**
EMD Publications:

- **Energy Resources for Human Settlement in the Solar System and Earth’s Future in Space**
  AAPG Special Publication - Print or CD – In Press: Early 2012

- **Shale Petroleum Reservoirs**
  AAPG Memoir 97 – Print and CD – In Press: 2011

- **Heavy Oil/Bitumen Petroleum Systems in Alberta & Beyond**

- **Coal Assessment of the Gulf Coast**

- **Atlas of Coal Geology**

- **Update on Unconventional Energy & Alternative Energy Resources**

- **Planning Stage:** Geothermal Energy in the Oil & Gas Industry
EMD Commodity Committees on:

- Oil Shale
- Gas Shales
- Coalbed Methane
- Oil Sands
- Gas Hydrates
- Tight Gas Sands
- Geothermal
- Uranium
- Renewables
- Coal
- Energy Economics & Technology

Enhancing contributions through an Energy Resource Specific organization
2010-2011 EMD Executive Committee

President
Michael D. Campbell, P.G., P.H.
T2M Associates, LLC
Houston, Texas

Past-President
Frank E. Walles, P.G.
Devon Energy, Inc.
Houston, Texas

President-Elect
Stephen M. Testa, P.G.
State Mining and Geology Board
California Department of Conservation
Sacramento, CA

Vice President
Genevieve B. Young, P.G.
BG Group, Inc.

Treasurer
Kent Bowker, P.G.
Bowker Petroleum, LLC

Secretary
Frances J. Hein, Ph.D., P.GEO.
Alberta Energy Research Conservation Board
Unconventional Energy Resources Committee

**Art Johnson**, P.G.,
Hydrate Energy International
Kenner, Louisiana
**Coalbed Methane Committee**

**Andrew R. Scott**, P.G.,
Albuda Energy Corporation
San Antonio, Texas

**Creties Jenkins**, P.E., P.G.,
DeGolyer & McNaughton
Dallas, Texas
**Tight Gas Sands Committee**

**Neil Fishman**, P.G.,
U.S.O.S.,
Denver, Colorado
**Gas Hydrates Committee**

**Debra Higley**, PH.D., P.G.,
U.S.O.S.,
Denver, Colorado
**Oil (Tar) Sands Committee**

**Jeremy Boak**, PH.D., P.G.,
Colorado School of Mines
Littleton, Colorado
**Oil Shale Committee**

Alternative Energy Resources Committees

**William A. Ambrose**, P.G.,
Texas Bur. Econ. Geol.
Austin, Texas
**Coal Committee**

**Michael D. Campbell**, P.G., P.H.,
IZM Associates, LLC
Houston, Texas
**Uranium (Nuclear Minerals) Committee**

**Richard E. Erdlac**, PH.D., P.G.,
Erdlac Energy Consulting
Midland, Texas
**Geothermal Energy Committee**

**Richard C. Bost**, P.E., P.G.,
Environ. Res. Mgt (ERM)
Houston, Texas
**Renewable Energy Committee**
Supporting Committees

From EMD Website

Jeremy B. Platt, P.G.
Electric Power Research Institute
Palo Alto, California
Energy Economics & Technology Committee

Jack R. Pashin, Ph.D., P.G.
Geological Survey of Alabama
Tuscaloosa, Alabama
Publications Committee

Brian Cardott, M.S., C.C.G.
Oklahoma Geological Survey
Norman, OK
Honors & Awards Committee
Gas (Tight) Sands Committee

Creties Jenkins, P.E., P.G.
Chair

Vice-Chair, DPA

Vice-Chair, DEG

Vice-Chair, Industry
TBA

Vice-Chair, University
TBA

Vice-Chair, Government
TBA

Advisory Committee

Observing Committee
(from AAPG Profile)

Special Consultants

From EMD Website
Scroll down within one or more of the rectangular boxes below across from the EMD Committee in which you may have a general interest. See Explanation to the right. Each of the eleven (11) EMD Committees is linked to its Public webpage. Once there, you may go on to the Members’ Only webpage to review the wealth of technical information available for each of the EMD Commodities as an EMD member benefit.

<table>
<thead>
<tr>
<th>TECHNICAL COMMITTEES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Unconventional Energy Resources Committee</strong></td>
<td></td>
</tr>
<tr>
<td>None at this time</td>
<td>Coalbed Methane</td>
</tr>
<tr>
<td>Observing Committee</td>
<td>Gas Hydrates</td>
</tr>
<tr>
<td>Active Committee</td>
<td>Gas Shales</td>
</tr>
<tr>
<td>None at this time</td>
<td>Tight Gas Sands</td>
</tr>
<tr>
<td>Observing Committee</td>
<td>Oil (Tar) Sands</td>
</tr>
<tr>
<td>None at this time</td>
<td>Oil Shale</td>
</tr>
<tr>
<td><strong>Alternative Energy Resources Committee</strong></td>
<td></td>
</tr>
<tr>
<td>None at this time</td>
<td>Coal</td>
</tr>
<tr>
<td>Active Committee</td>
<td>Uranium (Nuclear Minerals)</td>
</tr>
<tr>
<td>Active Committee</td>
<td>Geothermal Energy</td>
</tr>
<tr>
<td>None at this time</td>
<td>Renewable Energy</td>
</tr>
<tr>
<td><strong>SUPPORTING COMMITTEE</strong></td>
<td></td>
</tr>
<tr>
<td>None at this time</td>
<td>Energy Economics &amp; Technology</td>
</tr>
</tbody>
</table>

**Explanation**

You will note that each box offers three options: 1) None at this Time, 2) Active Committee, and 3) Observing Committee.

**Active Committee:**
The last two options inquire about your specific level of interest in a particular Committee. If you would like to be considered as a candidate for appointment to the Active Committee for one of the Committees, select “Active Committee.” If appointed by the Chair of the Committee, you will be expected to “actively” participate in the Committee activities. The Chair will contact you by e-mail in due course to further assess your candidacy. Please keep in mind that the Active Committee is limited to 15 members so if you are deemed qualified by the Chair, but the Committee is fully constituted at present, you will be placed on the Active Waiting List and notified by the Chair for further consideration when a position becomes available.

**Observing Committee:**
If you are only somewhat interested in the particular Commodity Committee but would be interested in monitoring its activities, select “Observing Committee” and you will then be placed on the Observing Committee list found on the Members’ Only webpage. If you wish to become more active at some stage, you can request the Chair to be considered for appointment to the Active Committee, if a position is available. To change your relative interest, you may also return to this Profile web page and select “Active Committee,” which would also begin the process.
Nuclear Power for Electrical Generation Pros and Cons

- Pros
  - Excellent for use as base-load electrical generation.
  - Minimal greenhouse-gas emissions during production of electricity.
  - Plants very inexpensive to operate (to boil water) in generating electricity.
  - Fuel costs are the lowest of all forms of fuels used to generate electricity.
  - The DOE estimates nuclear energy, factoring in the present value of building and operating appropriate facilities, is approximately 20%, 38%, 70% and 1% cheaper than onshore wind, offshore wind, solar photovoltaic and hydro-energy, respectively.
  - New designs are more efficient with even greater number of safety features.
Nuclear Power for Electrical Generation Pros and Cons

Cons

- Expensive to build, amongst the highest of all forms of electrical generation plants, although this expense tends to be offset by the inexpensive fuel costs.

- Creates high-level waste (future fuel?) that must be managed, although high-level waste is a resource that can be reprocessed; storage alternatives are available.

- Total high-level waste produced since the 1950’s would fill a football field or two to a depth of about 14 feet.

- Only 5% of fissionable material is consumed. Reprocessing of waste would extend current uranium supplies & reduce waste volume.

- New plant designs burn uranium more efficiently w/Be & Th, thereby reducing waste.

- Many Americans are of the opinion that if the U.S. stops using nuclear power, the rest of the world will follow, although the rest of the world is going to expand nuclear use regardless what the U.S. does. U.S. needs to remain a leader in the nuclear industry.
Nuclear Power for Electrical Generation Pros and Cons

- Cons
  
  Then the earthquake and tsunami hit Japan ... and the Fukushima Daiichi Nuclear Power Plants.....

A Forbes Photo
Nuclear Concerns Treated by News Media

- Billions of dollars in subsidies needed for all alternate-energy resources, including nuclear.
- Biodiesel is subsidized $1.00 per gallon; others subsidizations seldom mentioned.
- And then the Big Story....

Nuclear power was continuing to rise in popularity. Jones (2010) of Gallup reported that Americans' support for nuclear power had increased to 62%, establishing a new high, but then the earthquake and tsunami hit Japan and Fukushima Daiichi Nuclear Power Plants lost secondary power (see graph below).

![Gallup Graph](image)
Nuclear Concerns Treated by News Media

- Fukushima Daiichi Power Plants - 30 years of safe operation; not without regulatory issues.

- The Media reports on day-to-day rumors.

- Why didn’t the geologists speak up in Japan 40 years ago recommending re-siting of the plants? These plants were built to withstand the average 100-year earthquake/tsunami, rather than the worst-case scenario, which occurred during the 9th Century.

- A Case of Management Expediency?

- Lessons to Learn....Again! Build to withstand the likely maximum threat.

- Impact on U.S. building program? Probably a brief slowdown as safety and construction of U.S. nuclear power plants are re-examined (West Coast, and Memphis areas).

- New power plants have already taken into account additional safety concerns and are more efficient in electricity production than ever.
Nuclear Concerns Treated by News Media

Radiation Dose Chart

- **5 μSv**
  - One Dental X-Ray
- **40 μSv**
  - Radiation from flight from New York to LA.
- **60 μSv**
  - Sleeping next to someone (8.85 μSv)
  - Living within 50 miles of a nuclear power plant for a year (28 μSv)
  - Eating one banana (0.1 μSv)
- **75 μSv**
  - Eating a CATS monitor for a year (1 μSv)
  - Living in a store, brick, or concrete building for a year (76 μSv)
- **6 mSv**
  - Airplane Flight from New York to LA (48 μSv)
- **50 mSv**
  - Maximum annual dose from nuclear power plant (60 μSv)
  - Maximum annual dose from severe weather event (100 μSv)
- **75 mSv**
  - Minimum annual dose from severe weather event (100 μSv)
  - Maximum annual dose from severe weather event (200 μSv)
- **80 mSv**
  - One-day dose (12 μSv)
  - One day in 100 is 12 μSv or less
  - Average annual dose for U.S. radiation workers (38 μSv)
- **80 mSv**
  - One-day dose (12 μSv)
  - One day in 100 is 12 μSv or less
  - Average annual dose for U.S. radiation workers (38 μSv)
- **2 Sv (2,000 mSv)**
  - Severe Radiation Poisoning
- **8 Sv (8,000 mSv)**
  - Fatality, even with treatment (8 Sv)

Sources:
- [http://www.epa.gov/radiological/dosechart.html](http://www.epa.gov/radiological/dosechart.html)

Chart by Randi Ramee, with help from Elena, Senior Renter Operator at the Redstone Research Reactor, who suggested the idea and provided a lot of the sources. I’m sure I’ve missed in lots of mistakes; it’s for general education only. If you’re looking radiation safety procedures on an internet FAQ image and things go wrong, you have no one to blame but yourself.
Nuclear Power in the Future

• Fukushima Daiichi Power Plants

• The Global X Uranium ETF (URA), which tracks uranium-mining companies, has fallen 21% since March 10, the day before the major earthquake and tsunami occurred.

• This too will pass...because the lessons learned far out weigh the dangers of Nuclear Power to generate electricity in the U.S., and elsewhere.

• Any slow-down on current construction of new plants will force yellowcake prices to rise significantly. The world will continue to build nuclear power plants even if the U.S. were to stop construction.
Yellowcake Price History & Projections

Historical Spot Price of U₃O₈ (after UXC.com) and Projected Price, see C&A News Release
Yellowcake Price History & Projections

Plant Start-up Price for Many Projects

Current Spot Price of $U_3O_8$ (after UXC.com)
Uranium Recovery Techniques: Past & Present

- **Underground**
  - Problems with radiation exposure to miners who smoke tobacco, etc.
  - What to do with tailings from the old mines? Environmental remediation?
  - Prior to the environmental movement there were insufficient regulations to address health, safety, closure, and remediation concerns.

- **Open Pit Mining**
  - Fewer problems with radiation exposure to miners.
  - Left the ground surface disturbed because of a lack of effective closure.
  - There were insufficient regulations to address health, safety, closure, and remediation concerns during the 1970’s and 80’s.

- **In-situ Uranium Recovery**
  - Radiation exposure to plant workers very low.
  - No tailings or surface pits to manage.
  - Ground-water remediation of conditions within the original mineralized zone prior to mining is required after production is complete, usually about 5 to 7 years of additional operations. This does not involve restoration to regional water-quality levels, only reduction in oxidizing conditions within the zone to precipitate all metals currently in solution.
Uranium Recovery Techniques: Past & Present

Typical In Situ Uranium Recovery System

(After Campbell, et al., 2007)
Uranium Recovery Techniques: Past & Present

Typical In Situ Uranium Recovery System Surface Installation of Well Field

(After Campbell and Wise, 2010)
Uranium Recovery Techniques: Past & Present

Wells Being Installed for In Situ Uranium Recovery System

(After Campbell and Wise, 2010)
Typical Concerns of Environmental Advocacy Groups & Associated Media

- “Previous ISR mines didn’t close using the original cleanup levels,” see (Hall, 2009)
- “Mines release radiation into the air.”
- “Living around uranium mines show increased cancer rates,” see (Boice, 2003; USNIH, 2008)
- “Groups want aquifer baseline studies prior to any exploration drilling.”
- “In-situ Recovery operations should never be performed in drinking water aquifers.”
- “Mining activities will destroy the aquifer by pumping all available water and causing pollution.”
- “Homeowner reported a change in their drinking water from their well.”
- “Mining companies generally don’t care about the environment or health and safety of the workers.”
- “Persons who worked in a mine or served on Groundwater Conservation Boards are often presented by the news media as experts, but are practicing geology and/or hydrogeology in public with no training or experience in the fields.”
- “The government has a vested interest in allowing exploration and mining permits because that is how the governmental agencies are funded.”
- “The news media almost always portrays anti-nuclear advocates in a positive light.”
- “The news media often portrays governmental agencies as good only when they obstruct mining or nuclear energy and side with environmental advocacy groups.”
- “The news media makes no distinction between the three forms of mining.”
- “Uranium produced in the U.S. gets exported overseas.”
Typical Concerns of Environmental Advocacy Groups & Associated Media

- “Nuclear Power isn’t really carbon-free,” (see type of claims by Mudd and Diesendorf, 2008), but minor compared to conventional energy sources, i.e., coal, oil & gas, etc.

EIA studies illustrate current understanding of CO$_2$ production, (see USEIA).
Community Outreach Programs

- Company personnel should talk with community about technical issues:
  - Talk issues, dispel rumors & falsehoods and provide supporting information concerning:
    1) the unlikely occurrence of ground-water contamination by exploration drilling and in-situ recovery operations, and
    2) the need for local owners to provide regular maintenance by a Certified Water Well Contractor on their water wells to avoid or eliminate iron, manganese, and sulfate-reducing bacteria from fouling their wells, i.e. red water, etc., a condition that is entirely unrelated to nearby uranium drilling or development activities.
  - Explore or identify conflicting agendi, such as:
    1) envy of nearby land owners who do not have uranium below their lands,
    2) fear expressed by local real-estate agents that property values may fall because of the presence of uranium exploration & development activities in the area, and
    3) opposition of local residents to nuclear power development in general.
  - Point out positive features of uranium development & recovery, like oil & gas, i.e., local employment & spending, community funding (schools, etc.).
  - Combat media bias programming with objections to treatment by local and national news media, e.g. [http://mdcampbell.com/CAReviewszz/I2MAReviews.htm](http://mdcampbell.com/CAReviewszz/I2MAReviews.htm)
Current Conditions/Expectations of the U.S. Nuclear Industry:

- 4 million lbs / year $\text{U}_3\text{O}_8$ (Yellowcake) recovered in U.S. (2010).
- 25 million lbs / year $\text{U}_3\text{O}_8$ from Decommissioned Nuclear Weapons Program ends in 2013.
- 29 million lbs / year $\text{U}_3\text{O}_8$ current capacity in U.S. (per EIA and Nuclear Regulatory Commission (NRC) data)
- 104 nuclear power plants in U.S. (441 plants in world as of 2010).
- 52 million lbs / year $\text{U}_3\text{O}_8$ required to Load 104 U.S. reactors in U.S. (3-5 Year Fuel Cycle) – BeO & other modifications would increase fuel burn life and reduce load requirements.

Available waste storage site: **WIPP site** in New Mexico is presently licensed for defense transuranic nuclear waste including significant reprocessed spent fuel waste from old defense reactors. The site would be ideal for storing all nuclear waste at modest cost, at a cost of ten times less than cost projections for **Yucca Mountain**. Space is already set aside, and the infrastructure and work force are in place. Selection is a political problem, not technical!

- Globally (including U.S.) there are 441 plants in operation (less those damaged in Japan), 59 plants currently under construction, 439 planned and proposed, some of which may now be postponed until after a new round of safety reviews have been completed, although many plants have been running for decades without serious incident.
- China is planning more than 150 new nuclear reactors by itself over the next 15 years.
- NEI estimates that 1,000 to 1,200 reactors globally will be in operation by 2030.
Historical / Current Production of the U.S. Uranium Mining Industry

- 4 Mines Operating Today in U.S. = About 4 million lbs/year $\text{U}_3\text{O}_8$
- U.S. will need about 20 Mines in production to meet 2021 Requirements. See Campbell and Wise (2010) for discussions on estimated fuel needs through 2030.
Current Conditions / Expectations of the U.S. Nuclear Industry

- Estimated U.S. Resources: ~ 900 million lbs. Assume 50% as Reserves: Through 2025?
- After about 2025, additional yellowcake production must come from the overseas sources (i.e., high-grade deposits in Canada, Australia, Gabon, Argentina, and from lower-grade deposits in Kazakhstan, Niger, Zambia, Columbia, Guyana, etc.
- Re-processing of nuclear waste with Type IV Reactors (Breeder Reactors) by 2030 or before.
- Public will support nuclear development because coal mining and use are no longer acceptable in view of current climate-change issues. Current technology will be phased out over coming 15 years. Domestic natural gas will likely contribute to the U.S. for decades to come.
- A new energy-and-climate bill emerges in Congress: $54 billion in federal-loan guarantees for new nuclear projects. Plus 10% tax credit for nuclear construction costs and use of tax-exempt bonds for joint ventures for advanced nuclear facilities. This will be used to encourage new construction after current slowdown.
- The World Nuclear Association (WNA) projects possible world expansion of nuclear generating capability from current base of 387 GWe (441 plants rated @ 880 MWe (Ave) to 1,200-3,000 GWe by 2050 (see Campbell and Wise (2010).
Current Uranium Resources Available in the World

Reported Uranium Occurences According to Deposit Reserves and Type of Minerlization

(IAEA-UDEPO Data, 2009)

(EMD UCOM Report, 2011)
Past and Current Uranium Resources Available in the World

Estimates of Known Recoverable Uranium Resources:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>1,800,000</td>
<td>1,673,000</td>
<td>1,243,000</td>
<td>716,000</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>1,100,000</td>
<td>651,000</td>
<td>817,000</td>
<td>599,000</td>
</tr>
<tr>
<td>Canada</td>
<td>900,000</td>
<td>485,000</td>
<td>423,000</td>
<td>326,000</td>
</tr>
<tr>
<td>Russia</td>
<td>600,000</td>
<td>480,000</td>
<td>546,000</td>
<td>141,000</td>
</tr>
<tr>
<td>South Africa</td>
<td>400,000</td>
<td>295,000</td>
<td>435,000</td>
<td>293,000</td>
</tr>
<tr>
<td>Namibia</td>
<td>500,000</td>
<td>284,000</td>
<td>275,000</td>
<td>181,000</td>
</tr>
<tr>
<td>Brazil</td>
<td>400,000</td>
<td>279,000</td>
<td>278,000</td>
<td>162,000</td>
</tr>
<tr>
<td>Niger</td>
<td>300,000</td>
<td>272,000</td>
<td>274,000</td>
<td>200,000</td>
</tr>
<tr>
<td>USA</td>
<td>500,000</td>
<td>207,000</td>
<td>342,000</td>
<td>355,000</td>
</tr>
<tr>
<td>China</td>
<td>400,000</td>
<td>171,000</td>
<td>150,000</td>
<td>125,000</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>190,000</td>
<td>111,000</td>
<td>95,000</td>
<td>83,000</td>
</tr>
<tr>
<td>Ukraine</td>
<td>150,000</td>
<td>105,000</td>
<td>90,000</td>
<td>81,000</td>
</tr>
<tr>
<td>Other Countries</td>
<td>500,000</td>
<td>150,000</td>
<td>50,000</td>
<td>25,000</td>
</tr>
</tbody>
</table>


(Wise and Campbell, 2011)
Current Uranium Resources Available in the World

World Uranium: Number of Known Deposits by Country & Region - 2009

- Southeast Asia: 127
- South America: 43
- North America: 316
- Middle East: 23
- Far East: 10
- Europe: 241
- Asia: 293
- Africa: 165

(EMD UCOM Report, 2011)
(IAEA-UDEPO Data, 2009)
Where is the Energy Coming From in the Future?


Million # U,000/Year: 156
# Reactors: 404

WORLD POPULATION + ESTIMATED ENERGY DEMAND

NUCLEAR
Fission to Fusion Transition

POST 2000 WORLD LIQUIDS

RESERVES 1116 GBO
DISCOVERIES 939 GBO
RES. GROWTH 730 GBO
UNCONV. 570 GBO
GTL 365 GBO
TOT. FUL. LIQ. 3726 GBO
ULT. LIQ. 4856 GBO

John D. Edwards, Department of Geological Sciences, University of Colorado - Boulder

After Campbell and Campbell (2005)
Bill Gates has endorsed using small-scale nuclear power plants (25,000 MW or less), called “nuclear batteries,” for cities after disasters such as hurricanes, earthquakes, tsunamis. Also for use in small communities in remote locations. Terra Power, Hyperion Power, and Hitachi-GE are building newly designed smaller units at present, much of the research has come from Los Alamos National Laboratory over the past 30 years on space applications. Of note is that GE is using nuclear-waste products to fuel their reactors in part.

- 25 MWe – Electricity for > 20,000 Residents (For Disasters or for Remote Operations (Mining, Construction, Oil & Gas Production, etc.)
- 30-Yr System Life (8-10 year fuel-replacement cycle)
- $30 million Capital Cost
Small-Scale Nuclear Plants

Hyperion Power Generation
(Campbell, 2011)
## Small-Scale Nuclear Plants

### Operational Characteristics:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor Power</td>
<td>70MW Thermal</td>
</tr>
<tr>
<td>Electrical Output</td>
<td>25MW Electric</td>
</tr>
<tr>
<td>Lifetime (Power Module)</td>
<td>8 – 10 years</td>
</tr>
<tr>
<td>Size (meters)</td>
<td>1.5w x 2.5h</td>
</tr>
<tr>
<td>Weight (tons)</td>
<td>Less than 50</td>
</tr>
<tr>
<td>Structural Material</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Coolant</td>
<td>Lead-Bismuth Liquid</td>
</tr>
<tr>
<td>Fuel</td>
<td>Stainless Clad, Uranium Nitride</td>
</tr>
<tr>
<td>Enrichment (% U-235)</td>
<td>&lt;20%</td>
</tr>
<tr>
<td>Refuel on Site</td>
<td>No</td>
</tr>
<tr>
<td>Sealed Core</td>
<td>Yes</td>
</tr>
<tr>
<td>License</td>
<td>Design Certification</td>
</tr>
<tr>
<td>Passive Shutdown</td>
<td>Yes</td>
</tr>
<tr>
<td>Active Shutdown</td>
<td>Yes</td>
</tr>
<tr>
<td>Transportable</td>
<td>Yes – Intact Core</td>
</tr>
<tr>
<td>Factory Fueled</td>
<td>Yes</td>
</tr>
<tr>
<td>Safety &amp; Control Elements</td>
<td>Two Redundant Shutdown Systems &amp; Reactivity Control Rods</td>
</tr>
</tbody>
</table>
Small-Scale Nuclear Plants

Operational Characteristics:

1 Transportable:
   - Unit will measure approximately 1.5 meters wide x 2.5 meters tall
   - Fits into a standard fuel transport container
   - Transported via ship, rail, or truck
   - Modular design for easy and safe transport

2 Sealed Core:
   - Safe and Secure: Developed for Space Program at Los Alamos in NM
   - Factory sealed; no in-field refueling, closed-fuel cycle
   - Returned to the factory for fuel and waste disposition

3 Safety:
   - System built to minimize breaches through a combination of inherent and engineered features
   - Inherent negative feedback keeps the reactor stable and operating at a constant temperature
   - Sited underground, out of sight
   - Proliferation-resistant; reactor module never opened once installed in the field.

(Campbell, 2011)
Small-Scale Nuclear Plants

Operational Characteristics:

4 Operational Simplicity:
   - Operation limited to reactivity adjustments to maintain constant temperature output of 500°C
   - Produces power for 8 to 10 years depending on use

5 Minimal In-Core Mechanical Components:
   - Operational reliability is greatly enhanced by the reduction of moving mechanical parts

6 Isolated Power Production:
   - Electric generation components requiring maintenance are completely separated from the reactor
   - Allows existing generation facilities to be retrofitted
   - The Hyperion Power Module in the process of being licensed by national and international regulatory authorities.

Hyperion Power Generation
(Campbell, 2011)
Generation of Electricity: Both Small- and Large-Scale Nuclear Energy Plants

Do We Need to Look Elsewhere Too?

China, India, Japan, Russia are turning to the Moon !!!

WHY?
Uranium has been discovered. Rare Earths, Helium-3, Water, etc.
We think the 2\textsuperscript{nd} Space Race may well be afoot.

(After Elphic, et al. (2000); Campbell, et al. (2009); Yamashita (2009); and Campbell and Ambrose (2010))
References:


Mr. Campbell is the President of AAPG’s Energy Minerals Division (EMD, 2010-2011). He is also:

Chair of the Uranium (Nuclear Minerals) Committee of EMD,
Member of the Advisory Board of the Division of Environmental Geosciences (DEG),
Member of the AAPG Advisory Council,
Member of the Ohio Geological Society,
Member of the Houston Geological Society.

For additional information, see link: http://www.I2MAssociates.com