International Journal of Coal Geology 160-161 (2016) 73-81

e T

at

Contents lists available at ScienceDirect

International Journal of Coal Geology GEDLIGY

journal homepage: www.elsevier.com/locate/ijcoalgeo

Distribution of rare earth elements in eastern Kentucky coals: Indicators
of multiple modes of enrichment?

@ CrossMark

James C. Hower ®*, Cortland F. Eble °, Shifeng Dai ¢, Harvey E. Belkin ¢

@ University of Kentucky, Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511, USA

b Kentucky Geological Survey, Lexington, KY 40506, USA

¢ State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
4 US. Geological Survey ret., 956 National Center, Reston, VA 20192, USA

ARTICLE INFO ABSTRACT
Article history: Four eastern Kentucky Pennsylvanian coals (from oldest to youngest, the Manchester, Pond Creek, Fire
Received 27 February 2016 Clay, and Hazard coals) were examined for their total rare earth element (REY) concentration and the

Received in revised form 20 April 2016
Accepted 25 April 2016
Available online 29 April 2016

possible mechanisms for enrichment of the rare earths. Based on previous studies, four possible modes
are considered: terrigenous, tuffaceous, infiltrational, and hydrothermal, with the Dean coal, a correlative of
the Fire Clay coal, considered to be a typical example of the tuffaceous mode. The Fire Clay owes much of its
high REY content to the presence of a volcanic-ash-fall tonstein, with REY-bearing zircon and phosphates in

Keywords: . . - ! °
Pennsylvanian the coal in numerous locations. Some of the original REY elements may have components of the detrital minerals
lanthanides deposited in the peat. Leaching of REY from the tonstein into the surrounding coal and the hydrothermal over-

print of mineralizing fluids associated with the northwestwardly movement of the Pine Mountain thrust sheet
contributed to the total REY signature in the Fire Clay coal. Not all coals are going to have the complex history

Hydrothermal metamorphism
Volcanic eruptions

Tonstein of the Fire Clay coal, but it should be considered that the total history of REY enrichment by multiple mechanisms
is what gives us both the total REY concentration and the relative distribution of the individual lanthanide
elements.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction The light rare earth elements (LREE) have been considered to in-

Rare earth elements have come to be of increasing interest given
their use in a wide array of modern electronics (Greene, 2012; Hatch,
2012; Hower et al., 2016). Enhanced levels of rare earth elements
(REE or REY if yttrium is included in the assessment; for this work,
REY > 900 ppm on the ash basis will be considered to be an enhanced
concentration) are found in many US coals (data from Bragg et al.,
1998), with the Central Appalachian coalfield in eastern Kentucky, cen-
tral and southern West Virginia, and southwestern Virginia having
some of the best prospects. In particular, the Middle Pennsylvanian
Fire Clay coal and its correlatives are among the most promising re-
sources owing to the presence of a REY-rich volcanic ash-fall parting
(tonstein) (Rice et al., 1994; Hower et al.,, 1999, 2015a) or the presence
of high REY concentrations in the absence of the tonstein (Mardon and
Hower, 2004). The available resources of the Fire Clay coal were
discussed by Thacker et al. (2000).

* Corresponding author at: University of Kentucky, Center for Applied Energy Research,

2540 Research Park Drive, Lexington, KY 40511, USA.
E-mail address: james.hower@uky.edu (J.C. Hower).

http://dx.doi.org/10.1016/j.coal.2016.04.009
0166-5162/© 2016 Elsevier B.V. All rights reserved.

clude La through Sm and the heavy rare earth elements (HREE) span
Eu to Lu (Seredin, 1996a, b; Hower et al., 1999; Mardon and Hower,
2004; Dai et al.,, 2016b; among others). Seredin and Dai (2012) divid-
ed the REY into light, medium, and heavy fractions: LREY (La through
Sm), MREY — (Eu through Dy plus Y), and HREY — (Ho through Lu).
They also noted L-type (Lan/Luy > 1), M-type (Lan/Smpy < 1, Gdn/
Luy > 1), and H-type (Lan/Luy < 1) enrichment patterns. Further,
they emphasized that there were four main genetic modes of REY en-
richment in coals, as shown in Table 1. In some cases, the enrichment
of REY in coal is attributed to mixed mineralization (e.g., mixed
tuffaceous-hydrothermal type; Dai et al., 2016a). Notably, for this eval-
uation, the Dean coal, a Fire Clay correlative, is considered to be a typical
example of the tuffaceous mode of accumulation (Seredin and Dai,
2012).

The Fire Clay tonstein contains kaolinite; sanidine; p-quartz; magne-
tite and magnetite with ilmenite cores; the TiO, polymorphs anatase
and brookite; sphene; REE and Y-bearing zircon; Y-bearing Ca-
phosphates (crandallite); and Y-, La-, Ce-, Nd-, Dy- and Gd-bearing ap-
atite (Fig. 1) and monazite (Lyons et al., 1992; Hower et al., 1994a,
1999).
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Table 1
The main genetic types of high REY accumulation in coals.

Type REO content in ash, % Associated elements Typical example

Terrigenous 0.1-04 Al, Ga, Ba, Sr, Jungar, China (Dai et al., 2006; Dai et al., 2008)
Tuffaceous 0.1-0.5 Zr, Hf, Nb, Ta, Ga Dean, USA (Mardon and Hower, 2004)

Infiltrational 0.1-1.2 U, Mo, Se, Re Aduunchulun, Mongolia (Arbuzov and Mashen'kin, 2007)
Hydrothermal 0.1-1.5 As, Sb, Hg, Ag, Au, etc. Rettikhovka, Russia (Seredin, 2004)

REO, oxides of rare earth elements and yttrium.

Recent investigations by Belkin (this paper) found that the LREE-
enriched, Ce-bearing monazite contained 60.8 wt.% total rare earth ox-
ides, 4.2 wt.% ThO,, and 2.1 wt.% Y,0s. Zoning in the monazite is due
to variations in the Th content. The apatite tends to have a fluorapatite
composition and is LREE enriched with about 1 wt.% total rare earth ox-
ides. Zoned HREE-enriched zircons were found to have 0.33 wt.% total
rare earth oxides and 0.23 wt.% Y,0s.

The coal lithotype underlying the Fire Clay tonstein has 4200 ppm
REY and 5700 ppm Zr (both on ash basis) (Andrews et al., 1994;
Hower et al., 1999). REY enrichment below tonsteins was also noted
by Zielinski (1985); Triplehorn and Bohor (1983); Crowley et al.
(1989, 1993), and Ruppert and Moore (1993), as well as cases in other
areas (Dai et al,, 2016a).

Crowley et al. (1989) noted that secondary enrichment can
be a function of (1) ground water leaching of volcanic ash followed by
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uptake of the REY by organic matter, (2) ground water leaching of the
volcanic ash followed by incorporation into minerals, and (3) incorpora-
tion of volcanic minerals in the peat. Zielinski (1985) and Crowley et al.
(1989), in studies of Wyoming and Utah coals, respectively, noted
enrichments of REE in lithotypes immediately below tonsteins.
REY in coal are commonly found in clays and phosphates (Eskenazy,
1995); loosely bound REYs may become mobile when associated,
in particular, with clays (Eskenazy, 1999). Acidic waters tend to
preferentially desorb the heavier REY from the clays. There tends to be
an enrichment of HREE in peats and low-rank coals due to the stronger
HREE (versus the LREE) affinity for organics and the greater strength of
HREE-organic complexes (Eskenazy, 1978, 19873, b, ¢, 2015; Eskenazy
et al., 1986; Seredin et al., 1999; Pédrot et al., 2010; Davranche et al.,
2011; Aide and Aide, 2012). In contrast, for Pennsylvanian coal from
Inner Mongolia, China, Dai et al. (2008) found that the LREEs had a

Fig. 1. SEM backscattered electron images of unaltered apatite (A-C) and altered apatite (D-E) from the Fire Clay tonstein in eastern Kentucky. The apatite contains 0.08% La;03, 0.51%
Ce;03, 0.36% Nd,03, 0.12% Dy,03, and 0.36% Y,03. Quadrangle (7 %2-minute) locations: A & C/Ivydell, Tennessee; B/Hoskinston, Kentucky; and D & E/Sylvester, West Virginia.

Specimens and analyses from studies by Harvey Belkin.
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greater organic affinity than the HREE. As coal rank increases, the poten-
tial for chelation diminishes with the loss of functional groups (Given,
1984; Hatcher and Clifford, 1996). The REY released upon the loss of
the ligands could be then bound to clays (for example: Eskenazy,
1995; Seredin, 1996a, b) or form carbonate (such as bastndsite) or phos-
phate (such as xenotime) minerals. Extensive lists of REE-bearing min-
erals can be referenced through webmineral.com.

Dai et al. (2008) noted that preferential leaching of the LREE from
partings could lead to a high LREE/HREE in the underlying coal. In this
case, LREEs were enriched in Sr and Ba minerals (see also Dai et al.,
2006) and HREE were enriched in Sc, Zr, and Hf minerals. Hower et al.
(1999) found similar LREE/HREE in lithotypes immediately above and
below the REE-rich tonstein (6.31 and 6.69, respectively, versus 9.08
in the tonstein). While the latter coal lithotype values represent a de-
crease in LREE/HREE from the tonstein, the REE ratio immediately
below the coal is higher than in the three HREE-enriched basal
lithotypes (3.67-5.30 LREE/HREE). As another measure of the distinct
differences in the tonstein vs. coal rare earth chemistry, we note that
Ce/Yb, a parameter used by Eskenazy (1987b), is 50 in the tonstein vs.
20.8 in the underlying coal and 10.6-15.4 in the three basal lithotypes
(data from Hower et al., 1999).

Daietal. (2010,2011,2012a, b, c,2013a, b, 2014a, b, 2014c, d, 20153,
b, ¢) investigated REY occurrences in numerous Chinese coals, finding
that both terrigenous and hydrothermal influences account for the dis-
tribution of REY among the studied coals. In certain cases, there was ev-
idence for hydrothermal destruction of quartz, kaolinite, and detrital
REE-bearing minerals. The latter were redeposited as HREE-depleted
REY phosphates and possibly as HREE- and Y-enriched organic com-
pounds (Dai et al,, 2013a).

Given suites of samples from several individual coal seams spread
across a coal field, is it possible to discern distinct single or multiple
modes of accumulation of rare earth and other elements? Based on
compilations of previously published data (see Section 2), in this inves-
tigation, we are considering aspects of the overall minor and trace ele-
ment chemistry and the REY chemistry of four of the more heavily
mined coals in eastern Kentucky. Each was selected because (1) their
lateral extent and quality means that there has been historical produc-
tion over wide areas of the coal field and (2) they are each generally
prominent enough and devoid of multiple splits such that correlation
across the coal field is as assured as possible. With respect to point 1,
widespread mining does not mean that, despite the reference here to
just one coal name, the same name is used throughout the region. On
the contrary, at least 21 names have been used for the Manchester
coal and its correlatives in Kentucky and Virginia, with at least an addi-
tional five names in use when the entire coal zone is considered (based
on unpublished Kentucky Geological Survey, University of Kentucky
Center for Applied Energy Research, and Kentucky Department of
Mines and Minerals compilations in the 1980s; see also Rice and Hiett,
1994). With respect to point 2, while avoiding some widely mined
coal zones, such as the Upper Elkhorn No. 1 and Upper Elkhorn No. 2
coals and the Peach Orchard/Coalburg correlatives and splits, even the
coals considered here exhibit some interesting configurations. For ex-
ample, the high-S portion of the Manchester-correlative River Gem
coal (Hower and Pollock, 1989; Hower et al., 1996) is actually a rider
coal, which merges with the main coal bed within a small area in one
mine.

2. Methods

Chemical data for eastern Kentucky coals was obtained from
Bragg et al. (1998); procedures in Currens et al. (1987) with added
data from Hower et al. (1996, 1999) (Appendix A). In general,
all of the coal samples partings >1-cm thick would have been excluded
from the sample. The Fire Clay tonstein is generally at least 15-cm
thick, although some thin lenses of the tonstein have been observed
in an underlying coal lithotype (Andrews et al., 1994). All of the

coal samples listed in Appendix A would be subject to the exclusion of
>1-cm partings. The impact on the reported Fire Clay REY chemistry
would potentially be significant since the tonstein can account
for >20% of the REY in the floor-to-roof seam sections (Hower et al.,
2015a).

3. Results and discussion
3.1. Other coals: Gray Hawk and Harlan County coals

Prior to discussing the four coals being emphasized, two other
REY occurrences are notable. A three-bench suite of the Langsettian-
age Gray Hawk coal (Jackson County, Kentucky) was studied by
Hower et al. (2015b). They found that the upper two benches had
a tendency towards a medium- and heavy-REY enrichment and the
lower bench had a marked heavy-REY enrichment. The bottom
and middle benches had 925 and 1168 ppm REY (ash basis), respective-
ly. They speculated that the REY enrichment patterns were the
consequence of the influx of acidic waters and/or epithermal processes.
Among the Harlan County coals studied by Johnston et al. (2015), Darby
coal benches with high REY, TiO,, and P,0s suggest a TiO,-mineral,
phosphate, and zircon detrital influx as the source of the REY
enrichment. The Harlan coal had an M-type REY distribution in
contrast to the H-type distribution found in most of the Darby coal
lithotypes.

3.2. Manchester, Pond Creek, Fire Clay, and Hazard coals

On average, the Fire Clay coal and its correlatives have the highest
REY among the four coals considered for this discussion (Fig. 2;
Table 2). Subject to the caveats noted in the Introduction and the con-
sideration of the inclusion, or not, of partings in the whole-seam sample,
the relative scatter in the data (all of the individual coal seam averages
are less than three-times the standard deviation) should not be surpris-
ing. All of the coal seam averages take in samples from across the coal
field. The nature of the coals can vary considerably. For example, the
Pond Creek and it correlatives vary from a relatively thick coal in
Pike and Martin counties (Hower and Bland, 1989) to the thinner
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Fig. 2. Generalized coal column after formation and group assignments by Kentucky
Geological Survey. Stage and substage boundaries after Eble et al. (2009).
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Table 2

Average and standard deviation for ash yield; light rare earth elements (LREE), heavy REE (HREE), LREE/HREE, and REE + yttrium (REY) (all whole coal basis); and REY, light REY (LREY),
medium REY (MREY), and heavy REY (HREY). The Hazard, Fire Clay, Pond Creek, and Manchester coals and their correlatives are considered (after Hower et al., 1996, 1999; Bragg et al.,
1998). The number of samples for each coal is given below the coal name.

Whole coal basis Ash basis

Coal Ash LREE HREE LREE/HREE REY REY LREY MREY HREY
Hazard (x = 41) Avg. 10.86 62 8 8.11 81 834 609 182 42

St. dev. 6.25 35 4 471 41 312 188 123 26
Fire Clay (x = 40) Avg. 11.21 80 11 8.02 103 944 724 179 42

St. dev. 5.53 48 6 2.55 60 331 276 94 16
Pond Creek (x = 45) Avg. 7.05 30 5 5.87 40 569 403 134 33

St. dev. 412 25 3 234 30 226 175 74 12
Manchester (x = 40) Avg. 6.61 32 5 7.25 43 702 519 149 34

St. dev. 3.82 18 3 3.57 22 277 223 83 16

(40.6 m) thick, extremely low-ash (typically <2.0%, dry basis) Blue
Gem coal in the southwestern part of eastern Kentucky (Hower et al.,
19914, b).

Another way to examine the REY content of the individual
coals is to look at the maps of the distribution of the REY for the
four coals (Figs. 3-6). Among the coals emphasized here, none has
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the wide distribution of REY highs matching the Fire Clay (Fig. 4).
Some of the distributions mapped are skewed by the distribution
of mining; for example, the Blue Gem coal, one of the Pond Creek correl-
atives, was mined in Knox County, to the southwest of one of the most
intensive areas of Manchester coal mining in Clay County. This alone ac-
counts for some of the differences in the mapped contour patterns.

38 4

37.9

| 3784

37.7 4

art

376+

37.54

37.4

37.3+

37.2 4

37.14

600

37
8.9 L
T T T T T T T T T T
-836 835 834 -833 832 831 B3 829 -828 827

Fig. 3. Rare earth + yttrium (REY) distribution for the Hazard coal (ppm, on ash basis). Each contour line represents 50 ppm YEY.
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Fig. 4. Rare earth + yttrium (REY) distribution for the Fire Clay coal (ppm, on ash basis). Each contour line represents 50 ppm YEY.

Figs. 7 and 8 show the total REY vs. LREE/HREE for all four coals
and for the Fire Clay and Manchester coals, respectively. In general,
the Hazard, Pond Creek, and Manchester trends overlap the broader
Fire Clay trends (Fig. 7). Isolating the Manchester and Fire Clay coals
(Fig. 8) emphasizes that the Manchester REY and light REE/heavy REE
occupy a much smaller range than the Fire Clay coal. This shows
both the significant influence of the REY-rich tonstein on the Fire
Clay geochemistry and the possibility that some of the Fire Clay REY dis-
tribution could be due to more diverse sources than just the tuffaceous
input.

The relationship between Al,05 and TiO, can be used to discriminate
between modes of origin of elements in coals (Dai et al.,, 2015a, b). Spe-
cifically, Dai et al. (2011, 2014c) used the Al,05/TiO, ratio to distinguish
alkali, mafic and felsic tonsteins. With respect to all four of the coals em-
phasized here, the whole coal Al,0O3 vs. TiO, tends to be higher in the
Hazard and Fire Clay coals than for the Pond Creek and Manchester
coals (Fig. 9). Looking specifically at lithologies within the Fire Clay
coal (Fig. 10), while there is overlap between the fields, the tonstein
has a higher Al,03 content than the coal immediately underlying the
tonstein. An even sharper demarcation exists between the tonstein
and the basal lithotype, with the latter lithology having <33% Al,03
and the tonstein generally having >33% Al,03. The basal lithotype has
a wider range of TiO, than the tonstein or the underlying coal, including
some of the highest TiO, concentrations. This is not surprising as the

basal lithotype in many eastern Kentucky coals has been noted to
have high concentrations of TiO,, suggesting the presence of detrital ru-
tile or anatase (Hower and Bland, 1989; Hower and Pollock, 1989;
Hower et al., 19914, b, 1994a, b, 1996; Hatton et al., 1992; Andrews
et al., 1994; Mardon and Hower, 2004).

Hydrothermal saline fluids were directed to the northwest with
the emplacement of the Pine Mountain thrust fault to the southeast of
much of the study area under discussion (Fig. 11). This is seen in high
levels of chlorine in coals to the northwest of the fault versus negligible
Cl in the same coals on the thrust sheet (Hower et al., 1991a, b). Rela-
tively high levels of trace metals in the coals (Collins, 1993;
Sakulpitakphon et al., 2004) and the higher coal rank (Hower
and Rimmer, 1991) to the northwest of the fault are also observed.
Movement of REY-enriched hydrothermal deep-seated basinal fluids
coincident with the thrust emplacement of Pine Mountain has
not been investigated as of this time but other studies may provide in-
sight into the setting. Johannesson et al. (1996) noted that the Ln>*
state of the lanthanides would be the dominant form in acidic, hypersa-
line waters. Eskenazy (1999) noted that acidic waters would tend to
preferentially desorb the HREE with the HREE subsequently bound by
organics. In the case of REE enrichment in Russian Far East coals, but
not necessarily restricted to that geologic time and that location,
Seredin (19964, b) believed that the REEs were transported in a dis-
solved form.
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Fig. 5. Rare earth + yttrium (REY) distribution for the Pond Creek coal (ppm, on ash basis). Each contour line represents 50 ppm YEY.

4. Summary

Four eastern Kentucky Pennsylvanian coals were considered with
respect to their total rare earth element concentration and the possible
modes of origin of the rare earths. Four possible modes are considered:
terrigenous, tuffaceous, infiltrational, and hydrothermal. Among the
coals studied, the Dean coal, a correlative of the Fire Clay coal, was con-
sidered to be a typical example of the tuffaceous mode by Seredin and
Dai (2012); after data from Mardon and Hower (2004). The Fire Clay
owes much of its high REY content to the presence of a tonstein in the
coal in many locations, although it is not present at the mine studied
by Mardon and Hower (2004). The Fire Clay tonstein contains REY-
bearing zircon, crandallite, apatite, and monazite. Leaching of the
tonstein, an infiltrational input, albeit within the coal seam, contributed
to the enhanced REY concentrations in the surrounding coal
lithotypes, particularly the coal underlying the tonstein (Hower
et al., 1999). Considering that zircons and the phosphate minerals
(crandallite, apatite, and monazite) can be part of the detrital miner-
al input to any peat, not just the Fire Clay peat, it is possible that ter-
rigenous REY input is a common feature in many coals, including the
eastern Kentucky coals studied here. In addition, it is known that
there were subtle hydrothermal influences associated with the
northwestward-directed emplacement of the Pine Mountain thrust
sheet. The coals to the northwest of the thrust fault, including all of

the locations considered here, experienced the emplacement of
higher concentrations of Cl and trace metals (Hower et al., 1991a,
b; Collins, 1993; Sakulpitakphon et al., 2004) with an enhanced
metamorphism (Hower and Rimmer, 1991; Hower et al., 1991a, b)
than in the correlative coals on the thrust sheet.

The Fire Clay coal might be considered to be an extreme
example, perhaps not typical of any other coal in the Central
Appalachians. But, any coal may have experienced multiple types
of REY accumulation and the Fire Clay coal, in particular, may have
been influenced by all four modes of REY accumulation noted by
Seredin and Dai (2012). The observed concentrations of REY and the rel-
ative distributions of the lanthanide elements are the products of the
entire geologic history of the coal. Separating the individual events,
such as the differentiation between the terrigenous and tuffaceous
input, the hydrothermal metamorphic overprint, and the leaching and
redistribution of the elements with the coal, requires more detailed
studies.
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Appendix A. Supplementary data

Chemical data for eastern Kentucky coals from Bragg et al.
(1998) with added data from Hower et al. (1996, 1999). The
Manchester, Pond Creek, Fire Clay, and Hazard coals are empha-
sized in the text discussions. Compilations for the Peach Orchard
and Upper Elkhorn No. 1 and No. 2 coals are also included in the
Excel file. In the compilations (tab: quad just the average) for
the Manchester, Pond Creek, Fire Clay, and Hazard coals, the 7
1/2-minute quadrangle codes (http://kgs.uky.edu/kgsweb/
download/topo/TOPOX.html) were added to the tables. Supple-
mentary data associated with this article can be found in the on-
line version, at doi: http://dx.doi.org/10.1016/j.coal.2016.04.
009.

Wikamsburg, KY

[

Middissboro
Y

Fig. 11. Google Earth view of southeastern Kentucky and adjacent parts of Virginia and
Tennessee. The Pine Mountain thrust fault and the direction of movement of the thrust
sheet, the direction of fluid movement in front of the thrust sheet, the Rocky Face fault
zone on the thrust sheet, and the White Mountain fault zone southeastern Kentucky in
front of the thrust sheet are labeled on the Google Earth map. The locations of
Middlesboro and Williamsburg, Kentucky, and Jellico, Tennessee, are also shown on the
map. The location of the Google Earth area is indicated by the black square on the
Kentucky map above the image. The border between Virginia (VA) and Tennessee (TN)
is shown as a dashed line on the latter map.
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