Project History

- 1974 While at Rice University, Proposed A Comprehensive Uranium -Hydrogeological Exploration Program to U.S. ERDA (now DOE), Grand Junction, Co. (Campbell & Biddle, 1977, p. 17).
- 1977 Exploration Based on New ERDA National Uranium Resource Evaluation Program (NURE) Reports/Data Released.
- Major Geochemical Anomalies Identified (U, Th & REE))
- URI Raised Funds: \$300,000: Recon, Sampling & Analysis, Mapping & Claim Staking: Field Seasons (1977 & 1978)
- URI Final Report Issued in early 1979 Recommending Further Exploration, i.e., drilling and geophysics.
- 1979: Three-Mile Island Nuclear Power Plant Incident. Media fear-pandering overtook U.S. (more).
- Uranium Price Fell & U.S. Nuclear Power Plant Permitting & Construction Ceased, until recently.
- Continued Research & Monitoring over the years, Campbell, et al., (2020a) and 2020b)

Investigators:

Original Field Team:

Michael D. Campbell, P.G., P.H.

Kevin T. Biddle, Ph.D.

Charles C. Wielchowsky, Ph.D.

Chuck Weisenberg, Ph.D.

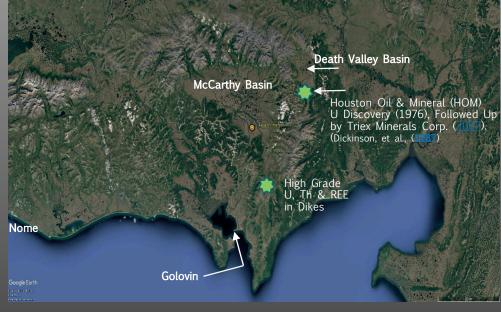
Eric Nelson, Ph.D.

M. David Campbell, P.G.

Recent Support:

Robert T. Gregory, P.G.

Roger W. Lee, Ph.D.


James L. Conca, Ph.D.

Early Project Results:

- High Grade U, Th & REE in Dikes within Cretaceous Kachauik Pluton
- Potential Uranium Source: Eastern Edge of Tertiary McCarthy Basin (Crater?)
- ❖ New U Roll-Front District?

Project Location

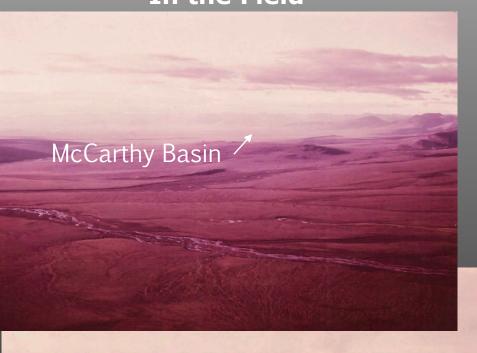




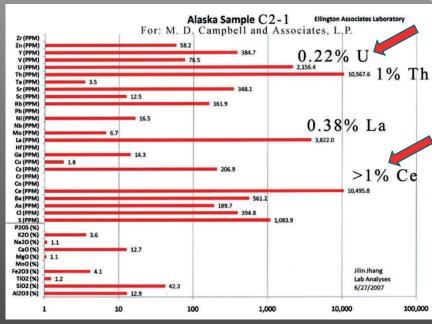
- USGS Indicated 16,000 feet paludal & fluvial sediments of quartz, feldspar, etc. in basin.
- Presence of Lignite
- Analogy present: HOM U discovery in heavily faulted Tertiary sediments with abundant lignite.
- Leaching of U from source to groundwater creating classical roll-front uranium deposit within the eastern section of basin.
- (See Campbell & Biddle, 1977).

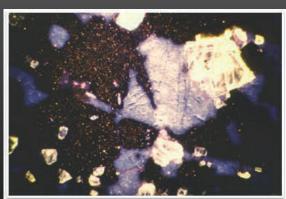
In the Field

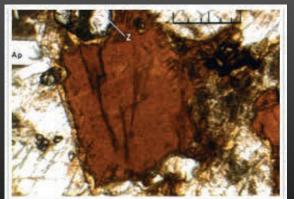
Field Personnel



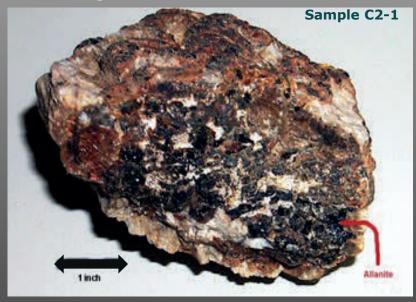
1978 URI Field Team: Claim Staking, Mapping & Sampling



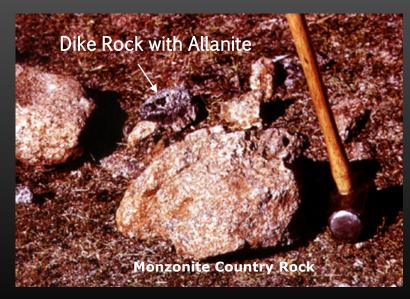




Rock-Sample Analyses


Allanite in Thin-Section:

- ✓ Allanite with Ce-Ti Reaction Rims (Late Stage = Hydrothermal Activity?)
 ✓ Stress Cracks in Allanite (Brown)
- ✓ Isolated Zircon, Monazite, & Apatite✓ Feldspar (White)


Catholuminescence View:

- ✓ Allanite (Black) w/ numerous
- nucleation sites for U, Th, & REE

 Allanite invading Feldspar (Late Stage)
 All Monazite, Apatite & Zircon
 Fluorescing ((faint yellow)

Fresh Break of Outcrop Sample showing large Allanite crystals (Black) within matrix of Feldspar (White)

Weathered Dike and Igneous Rocks from Outcrop

Rock-Sample Geochemistry

TABLE 5

WHOLE ROCK ANALYSES (TOTAL MAJOR, MINOR & TRACE ELEMENT SCAN)

CAMPIE	CAMPAR	DOCK NAME	11+	Th ⁺	Bi	Т1	Hg	۸.,	Pt	Ir	. 00	D.o.		m-	11.6	T.,	WL.	m	Er	Но	D.,	Tb		Eu	Sm	Nd ⁺
LOC.	SAMPLE #	ROCK NAME	-	111	DI	11	ng	Au	PL	II	0s	Re	w	Ta	Hf	Lu	УЪ	Tm	EI	no	Dy	10	Gd	Eu	Sill	Nd
	-																									
	Souther	n Area																								
C2-1 C2-1 C2-1 C2-1 C2-6 C2-6 C2-14	C2-1A** C2-1A** C2-1C** C2-3 C2-16 C2-17** C2-26 C2-27 Centra	Allanite Monzonite Allanite Monzonite Allanite Monzonite Nepheline Syenite Nepheline Phonolite Allanite Monzonite Amphibole Phonolite Augite Syenite	MC MC MC 24 MC 30 30	MC MC 150 0 7 MC 18 81	26 15 16 NR 44 12 0.4	0.8 20 2 1 3 2 5 5	NR NR NR NR NR NR NR	NR NR NR NR NR NR NR	NR NR NR NR NR NR NR	NR NR NR NR NR NR NR	≤0.1 NR NR NR NR NR NR	≤ 0.8 NR ≤ 1 NR NR ≤ 2 NR NR	0.7 NR NR NR 0.9 = 0.7 2	≤ 0.2 NR ≤ 0.2 ≤ 3 ≤ 0.8 ≤ 0.6 ≤ 0.7 ≤ 0.7	15 200 98 4 2 36 4 4	2 0.5 0.3 NR 0.8 NR	14 11 5 3 NR 9 NR 2	2 1 0.7 0.4 NR 1 NR 0.3	31 18 21 3 NR 56 NR	37 23 28 4 0.5 46 NR 2	150 160 140 12 8 730 4 16	84 21 18 2 0.9 67 0.7 2	220 180 240 8 5 390 2	44 44 24 0.6 88 0.4 4	630 400 420 26 MC	840 MC 77 27 MC 21 85
C2-15 C2-17 D2-44 D2-44 D2-48 D2-61	C2-28 D2-30 D2-52 D2-53 D2-57 D2-65 Norther	Allanite Monzonite Allanite Amphibole Syenite Melanite Phonolite Horn, Biotite Granodiorite Melanite Phonolite Tremolite(?) Phonolite n Area	30	$ \begin{array}{r} 180 \\ \hline 620 \\ \hline 81 \\ \hline 17 \\ \hline 200 \\ \hline 39 \\ \end{array} $	NR 0.6 0.4 NR 0.7 0.2	2 3 5 1 2	NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	NR NR ≤ 0.9 NR ≤ 0.9	40.8	9 20 5 NR 11 1	0.4 0.7 0.2 0.1 0.2	2 6 2 0.5 2 0.9	0.3 1 0.3 ≤ 0.1 0.3 0.1	2 7/2 0.8 2 0.8	2 9 6 1 2	4 25 16 2 9 4	0.8 $\frac{6}{3}$ 0.4 2 0.4	5 17 10 3 22 3	1 5 0.5 3 0.5	16 <u>68</u> <u>40</u> 5 <u>40</u> 8	21 160 94 4 94 10
D2-2 D2-2 D2-3 D2-3A	D2-8 D2-9 D2-11A D2-12	Nepheline Syenite Nepheline Phonolite Granite Allamite Nepheline Syenite		$\frac{\frac{41}{140}}{\frac{260}{270}}$	0.2 2 NR 0.5	≤0.5 ≤2 1 2	NR NR NR NR	NR NR NR NR	NR NR NR NR	NR NR NR NR	NR NR NR NR	NR NR NR NR	±0.9 ≤2 NR 0.6	≤0.4 ≤3 ≤0.5 ≤0.5	1 3 1 2	NR 0.4 NR 0.1	0.6 : 2 NR 1	≤ 0.1 0.4 NR 0.2	0.4 1 0.5 1	0.5 4 0.7 2	5 16 3 5	0.4 4 0.5 0.7	3 10 2 6	0.6 <u>4</u> 0.8 0.9	9 27 7 13	11 36 15 31

⁺Element reanalyzed (XRF, etc.). See Table 2 (wt.%). Not included in trace element content summary. **Considered mineralized.

Considered strongly anomalous.

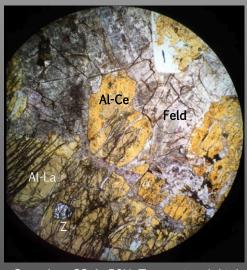
SAMPLE LOC.	SAMPLE #	ROCK NAME	Pr+	Ce+	La+	Ba ⁺	Cs	I	Те	Sb	Sn.	In	Cd	Ag	Pd	Rh	Ru	Мо	Nb	Zr ⁺	Y	Sr ⁺	Rb	Br	Se	As
	Souther	n Area																								
C2-1 C2-1 C2-1 C2-1 C2-6 C2-6 C2-14	C2-1** C2-1A** C2-1C** C2-3 C2-16 C2-17** C2-26 C2-27 Central	Allanite Monzonite Allanite Monzonite Allanite Monzonite Nepheline Syenite Nepheline Phonolite Allanite Monzonite Amphibole Phonolite Augite Syenite	990 990 MC 36 22 MC 25 40	MC MC MC 230 250 MC 280 280	MC MC 360 250 MC 490 200	360 200 MC MC MC 720 900 MC	28 12 11 10 14 5 3 12	2 0.4 2 7 2 7 7 7	NR 1 0.7 NR ≤ 0.2 ≤ 0.4 NR	1 3 2 NR NR 1 NR 1	7 6 8 6 0.6 11 0.7 7	STD STD STD STD STD STD STD STD	62 29 0.9 0.7 9 0.3 0.6	NR NR NR NR NR NR NR NR	NR NR NR NR NR NR NR	NR NR NR NR NR NR NR	NR NR NR NR NR NR NR	0.8 2 1 2 1 4 2 9	9 4 5 80 50 190 98 44	220 MC MC 810 250 120	550 500 240 51 7 500 2 62	300 760 580 MC MC MC 970	66 160 200 340 190 290 160 160	≤ 1 ≤ 0.7 21 6/2 ≤ 3 4 2	1 18 2	7 4 2 ≤ 0.7 5 3 4 ≤ 0.8
C2-15 C2-17 D2-44 D2-44 D2-48 D2-61	C2-28 D2-30 D2-52 D2-53 D2-57 D2-65 Norther	Allanite Monzonite Allanite Amphibole Syenite Melanite Phonolite Horn. Biotite Granodiorite Melanite Phonolite Tremolite(?) Phonolite	10 75 44 5 99 19	280 840 490 24 490 130	490 490 42 880 94	MC MC MC MC MC MC	48 12 6 28 6	2 7 4 2 2 2	NR NR NR NR NR	NR 6 1 0.3 0.7 NR	2 12 0 2 NR 2	STD STD STD STD STD STD	1 2 1 0.1 0.6 0.3	NR NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	NR NR NR NR NR	2 3 2 1 0.9 0.8	24 42 44 5 98	550 MC 550 15 550	28 24 62 7 62 12	680 MC 360 MC	160 MEDIO 200 M	2 6 2 0.8 2 2	4 2	±0.8 5 4 ±0.4 13
D2-2 D2-2 D2-3 D2-3A	D2-8 D2-9 D2-11A D2-12	n Area Nepheline Syenite Nepheline Phonolite Granite Allanite Nepheline Syenite	11 17 7 14	56 190 79 160	340 110 160	MC MC 170	11 5 9 4	2 4 29	NR NR NR ≤ 0.5	0.3 1 1 0.5	0.9 3 1 1	STD STD STD	0.2 1 0.4 0.1	NR NR NR	NR NR NR nr	NR NR NR	NR NR NR NR	0.5 <u>9</u> 0.7	75 7 8	62 210 87 40	7 24 4 16	390 MC 220 100	290 360	3 7 1 1	1 4 2 2	2 3 3 1

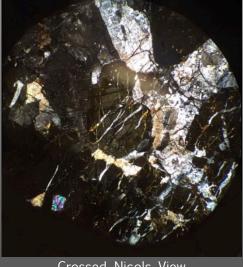
⁺Element reanalyzed (XRF, etc.). See Table 2 (wt. %). Not included in trace element content summary. **Considered mineralized.

Whole-Rock Geochemistry

- ✓ 11 Elements > 1,000 ppm (MC)
- 🔽 🛮 In Allanite Monzonite: U, Th, La, Ce, Sm, Pr, Nd, and
- In Allanite Amphibole Syenite,
 Melanite Phonolite and Tremolite Phonolite: Ba, Zr, Sr, and Rb
- Others "Anomalous": Eu, Tb, Cs, Sn, Ag, Mo, Nb, Cs, I, Nb, etc.

Not reported. MC-Major component

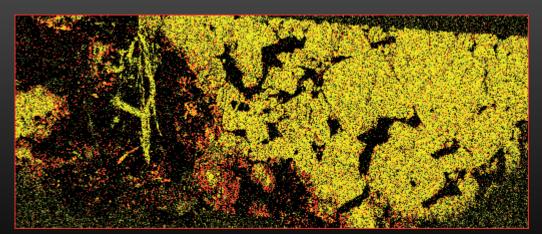

Considered anomalous.


NR-Not reported.


MC-Major component /-0 1% __Considered anomalous. __Considered strongly anomalous.

> 1,000

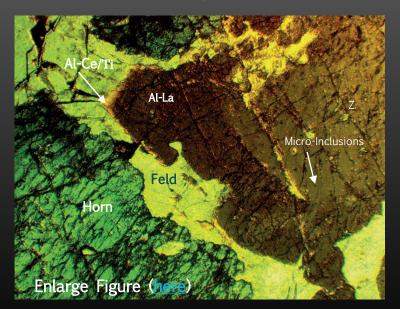
Rock-Sample Microscopy



Samples C2-1 50X Transmitted Light

Crossed Nicols View

Al-La = La-Allanite Al-Ce = Ce-Allanite Feld = Feldspar Z = Zircon Horn = Hornblende

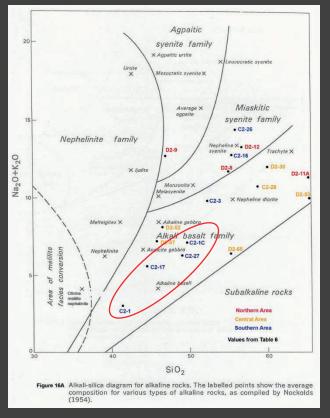

- Indicating Two-Stage (Ce-La) Allanite Formation
- Indicating Stress-Cracks Facilitating Drainage

Sample C2-1 XRF- Allanite — Containing Abundant Calcium (Yellow), with Ti (Red) and Ce (Orange) Reaction Rim and Ti in Feldspar (Black)

Campbell, et al., (2018), especially pp. 29-30, and Appendix II, pp. 61-62

Ag = Augite Ac = Accessory Minerals, (Monazite, Apatite, etc.)

Sample C-17 100X Transmitted Light Note Stress Cracks and Micro-Inclusions in Al-La

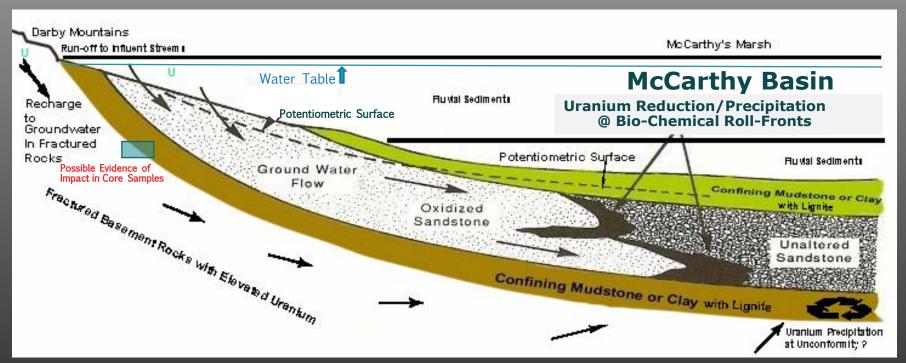

Darby and Granite Mountains USGS Rock and Sediment Sampling Compared to URI Rock Sampling: Kachauik, Burnt Creek, & Dry Canyon Creek Areas, 10,000.00 Eastern Seward Peninsula, Alaska C2-1 and C2-17 1,000.00 Southern Area D2-12 **Central Area** Northern Area C2-26 D2-30 100.00 Southern Area 2-16 -Southern Area 10.00 Northern Area 1.00 Central Area 1.0 10.0 100.0 ■ URI Rock from Kachauik, Burnt Creek & Dry Canyon Creek Areas USGS Rock Darby Area

Regional Uranium / Thorium Distribution Plot

- Plot Shows URI Samples (Rock) in Context with U.S.G.S. Sampling (Rock and Sediment)
- ❖ URI Samples (Black boxes) average higher in U/Th
- ❖ URI Samples in Mineralized Zone very high in U/Th
- URI Samples from three Plutons:

Northern Area Dry Canyon Creek Pluton (high U), Central Area Burnt Creek Pluton (high U), and Southern Area Kachauik Pluton (with mineralized zones (high U & REE))

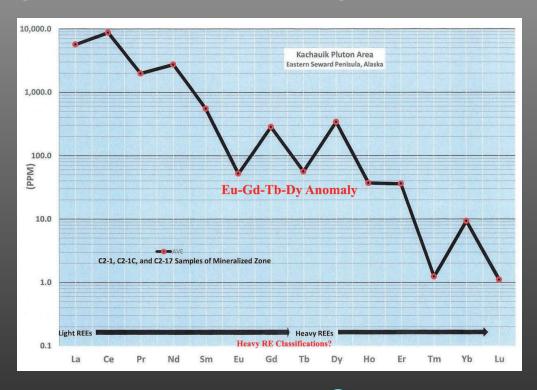
Types of Alkaline Rocks Sampled



SiO₂ vs. Alkalinity Ratio Plot

- Samples from Mineralized Zone with >>> REE Concentrations
- Decreasing SiO₂ + Increasing Alkali Carbonatite Nearby ?
- Numerous Types of Subalkaline Rocks in Area.

Assembling Evidence: Generalized Model of Likely Uranium Roll-Front Development in McCarthy Basin

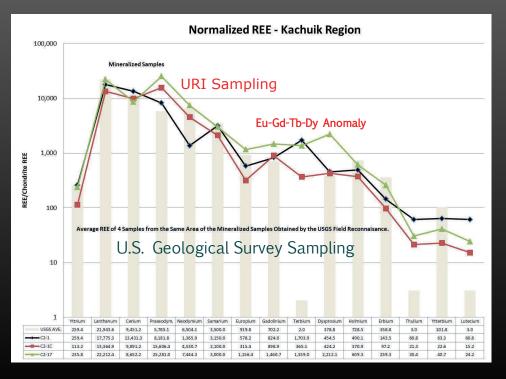


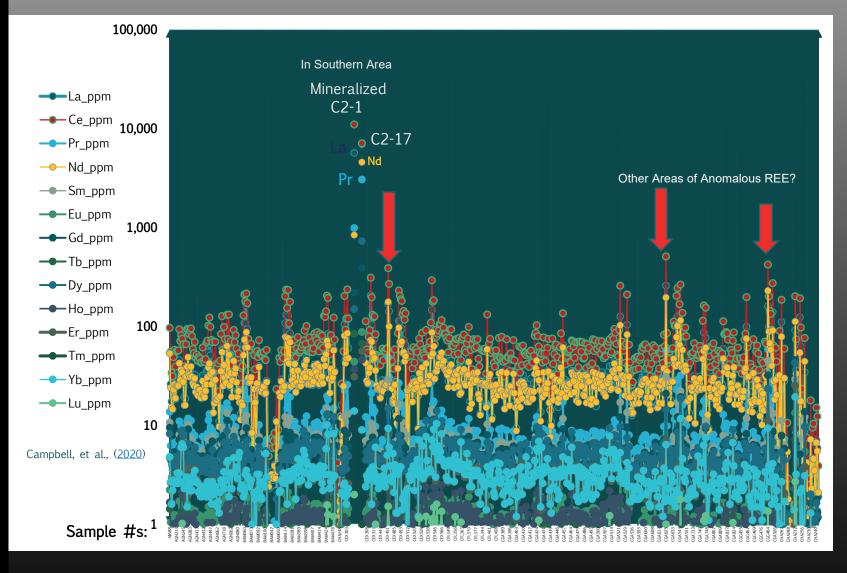
Basic Requirements are Present:

- ✓ Uranium Source Rocks of Cretaceous Age are in Proximity to Basin Containing ~16,000 Ft. of Tertiary Fluvial Sediments w/Lignite.
- ✓ Analogue Present of a Roll-Front Uranium Occurrence in Fault-Blocked Tertiary Sediments South of Death Valley Basin.
- ✓ Groundwater Recharges the Basin with Elevated Uranium... Likely Forming Multiple Uranium Roll Fronts @ Shallow Depths.

Question: Where in Basin are Roll Fronts Likely to Occur? Where Lignite (or H₂S or ?) Provide Reducing Conditions.

Average REE Concentrations- Kachuik Region - Mineralized Zone




What About the Rare-Earth Mineralization?

REE Concentration Plots Indicate:

- > Averaged Concentration of REE Samples
- > A Clear Eu-Gd•Tb-Dy Anomaly
- Normalized REEs Show No Negative Eu Anomaly

Distribution of REE in Area

- Geochemical Survey of **REE** in Area by USGS and consultants in general area of **REE** mineralization, shows anomalies.
- Graphic shows how widespread REE are in sediments derived from igneous rocks in 100 sq. mile area around mineralized zones.
- Ce dominates REE group, with decreasing concentrations of La, Nd, Pr, etc., in mineralized zones.

>>>> No Eu Negative Anomaly.

What About Near-By Death Valley Basin? Ground Magnetic Survey McCarthy Basin **HOM & Triex U Discovery** eath Valley Basin Geophysical Results (here) McCarthy Basin Sampling Sites 1982 Field Team MESTIC & INTERNATIONAL MINERAL CONSULTANTS eath Valley Project Investigations - 1981 - 1985 Q Line Death Valley Basin Death Valley McCarthy Basin For the rest of the story, see Campbell, et al., (2018)

References

Campbell, M. D., and K. T. Biddle, 1977, *Geology of Alternate Energy Resources*, Chapter 1, Frontier Areas and Exploration Techniques, Frontier Uranium Exploration in the South-Central United States, published by the Houston Geological Society, see pp. 17 and 38 (Reference). URL: http://www.mdcampbell.com/CamBidd77.pdf

Campbell, M. D., R. I. Rackley, R. W. Lee, M. David Campbell, H. M. Wise, J. D. King, and S. E. Campbell, 2018, "Characterization of the Occurrence of Uranium, Thorium, Rare Earths and Other Metals in Basement Rocks as a Source for New Uranium Roll-Front District in the Tertiary Sediments in the McCarthy Marsh and Death Valley and Associated Metallogenic Areas in the Eastern Seward Peninsula, Alaska, *Journal Geology and Geosciences*, Vol. 2(1), 2018, 65 p., URL:

Campbell, M. D., 2020a, "Uranium & Nuclear Power are on the Move!" An Energy Minerals Division Uranium (Nuclear & REE) Committee Report to the News (News (New (News (News (News (New (News (News (News (News (News (News (New

Campbell, M. D., 2020b, "Beyond Hydrocarbons ... The Rest of the Story," An Energy Minerals Division Uranium (Nuclear & REE) Committee Report, October, 11 p., URL: https://izmassociates.com/downloads/BEYONDHYDROCARBONS-2020Expanded||Rev.pdf

Campbell, M. D., R. W. Gregory, S. S. Sibray, and J. L. Conca, 2020c, "Sources of Rare Earth Elements in the U.S. and the World," The First AAPG-Energy Minerals Division Virtual Conference, An Energy Minerals Division Uranium (Nuclear & REE) Committee Report September 28 to October 2, Details: I2M News (here), URL: https://i2massociates.com/downloads/REE-EMDPresentation8-31-20.pdf

Dickinson, K. A., K. D. Cunningham, and T. A. Ager, 1987, "Geology and Origin of the Death Valley Uranium Deposit, Seward Peninsula, Alaska," in *Economic Geology*, Vol. 82, pp. 1558-1574, URL: http://www.i2massociates.com/downloads/Dickenson1558.pdf

Till, A. B., J. A. Dumoulin, B. M. Gambia, D. S. Kaufman, and P. I. Carroll, 1986, "Preliminary Geologic Map and Fossil Data from Solomon, Bendeleben, and Southern Kotzebue Quadrangles," U. S. Geological Survey, Open-File Report 86-2786, Plate 1, URL: https://i2massociates.com/downloads/Till-USGS-1986PlatelC.pdf in report: https://i2massociates.com/downloads/Till-USGS-1986.pdf

Till, A. B., J. A. Dumoulin, M. B. Werdon, and H. A. Bleick, 2011, "Bedrock Geologic Map of the Seward Peninsula, Alaska, and Accompanying Conodont Data," Pamphlet to accompany U. S. Geological Survey Scientific Investigations Map 3131, URL: http://www.i2massociates.com/downloads/sim3131_pamphlet.pdf

Triex Minerals Corporation, 2007, "Discovery of Uranium in Boulder Creek Area near Death Valley," Press Release. URL: https://web.i2massociates.com/resource_detail.php?resource_id=7907

For additional information available from our research over the years on the subject matter, see below in PDF version from the I2M Web Portal:

1. Allanite (here) 2. Uranium in Alaska (here) 3. Rare Earths in Alaska (here)

"I'll be glad to speak to you further on this very interesting project."

"Have a good year."

For PDF with hyperlinks, see:

http://i2massociates.com/downloads/Campbell2021IMAGE.pd